快速傅里叶变换
数值微分
等距
数学
数值分析
操作员(生物学)
趋同(经济学)
傅里叶变换
离散化
算法
应用数学
数学分析
几何学
生物化学
化学
抑制因子
转录因子
经济
基因
经济增长
作者
Nadaniela Egidi,Josephin Giacomini,Pierluigi Maponi,Michael Youssef
标识
DOI:10.1016/j.amc.2023.127856
摘要
We consider the numerical differentiation of a function tabulated at equidistant points. The proposed method is based on the Fast Fourier Transform (FFT) and the singular value expansion of a proper Volterra integral operator that reformulates the derivative operator. We provide the convergence analysis of the proposed method and the results of a numerical experiment conducted for comparing the proposed method performance with that of the Neville Algorithm implemented in the NAG library.
科研通智能强力驱动
Strongly Powered by AbleSci AI