Controlling the Plastic Anisotropy of Magnesium Alloy by Tailoring the Grain Size and Yttrium Content

成形性 材料科学 粒度 微观结构 延展性(地球科学) 冶金 合金 各向异性 可塑性 复合材料 蠕动 物理 量子力学 氧化物
作者
M. Arul Kumar,M. Wroński,Irene J. Beyerlein
出处
期刊:Crystals [Multidisciplinary Digital Publishing Institute]
卷期号:13 (1): 115-115 被引量:3
标识
DOI:10.3390/cryst13010115
摘要

Hexagonal close-packed (HCP) magnesium alloys are widely used in automotive and aerospace industries due to their low density and high specific-strength. Their applicability is mainly restricted due to poor formability and pronounced plastic anisotropy. The formability is usually improved by altering the chemistry (adding rare-earth elements like Y) or modulating the microstructure (e.g., grain refinement). However, grain refinement alone cannot yield the desired ductility, and the scarcity of rare-earth elements also limits the extent to which the alloying strategy can be used. To overcome these issues, in this work, it is proposed that the formability of Mg alloys can be improved by combining the grain refinement and alloying approaches. To quantitively explore this possibility, a crystal-plasticity-based constitutive model, which is sensitive to both alloying concentration and grain sizes, is developed. To demonstrate, the model is applied to study the combined effect of Y content and grain size on the mechanical responses of Mg alloy. The calculations are used to build maps of plastic anisotropy measures, such as tension–compression asymmetry ratio and Lankford coefficients, for a wide range of Y content and grain sizes. From these maps, the grain size that would yield the desired performance of Mg alloy for a fixed Y content can be identified. This work provides an accelerated pathway to optimize both the microstructure and chemistry simultaneously to achieve formability and to reduce the dependence on alloying.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oi发布了新的文献求助10
刚刚
Lyensa发布了新的文献求助10
刚刚
Legend_完成签到 ,获得积分10
刚刚
滴滴哒完成签到,获得积分10
刚刚
1秒前
yang123发布了新的文献求助10
1秒前
littleJ完成签到,获得积分10
2秒前
xiaoyao完成签到,获得积分10
4秒前
什么我才是大萌萌完成签到,获得积分0
4秒前
4秒前
5秒前
Goodenough发布了新的文献求助10
6秒前
6秒前
萌兰完成签到,获得积分10
7秒前
劲秉应助吴彦祖采纳,获得100
8秒前
VDC发布了新的文献求助10
8秒前
9秒前
358489228完成签到 ,获得积分10
9秒前
12秒前
淡定靖儿完成签到 ,获得积分10
12秒前
快乐汉堡发布了新的文献求助10
14秒前
14秒前
陪伴发布了新的文献求助10
15秒前
16秒前
王美贤完成签到,获得积分20
17秒前
传奇3应助小乔采纳,获得10
17秒前
黎明完成签到,获得积分10
17秒前
18秒前
19秒前
司徒不正完成签到 ,获得积分10
20秒前
学术老6完成签到 ,获得积分10
20秒前
21秒前
22秒前
estate完成签到,获得积分10
22秒前
xr发布了新的文献求助10
22秒前
hyg完成签到,获得积分20
23秒前
SciGPT应助不过敏的橙子采纳,获得10
23秒前
hyg发布了新的文献求助10
24秒前
慎独完成签到 ,获得积分10
25秒前
azhu完成签到 ,获得积分10
26秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672618
求助须知:如何正确求助?哪些是违规求助? 3228837
关于积分的说明 9782239
捐赠科研通 2939285
什么是DOI,文献DOI怎么找? 1610741
邀请新用户注册赠送积分活动 760709
科研通“疑难数据库(出版商)”最低求助积分说明 736198