Gene’s expression underpinning the divergent predictive value of [18F]F-fluorodeoxyglucose and prostate-specific membrane antigen positron emission tomography in primary prostate cancer: a bioinformatic and experimental study

前列腺癌 正电子发射断层摄影术 标准摄取值 氟脱氧葡萄糖 基因表达 癌症研究 谷氨酸羧肽酶Ⅱ 病理 生物 医学 基因 核医学 癌症 内科学 生物化学
作者
Matteo Bauckneht,Cecilia Marini,Vanessa Cossu,Cristina Campi,Mattia Riondato,Silvia Bruno,Anna Maria Orengo,Francesca Vitale,Sonia Carta,Silvia Chiola,Sabrina Chiesa,Alberto Miceli,Francesca D’Amico,Giuseppe Fornarini,Carlo Terrone,Michele Piana,Silvia Morbelli,Alessio Signori,Paola Barboro,Gianmario Sambuceti
出处
期刊:Journal of Translational Medicine [Springer Nature]
卷期号:21 (1) 被引量:8
标识
DOI:10.1186/s12967-022-03846-1
摘要

Positron Emission Tomography (PET) imaging with Prostate-Specific Membrane Antigen (PSMA) and Fluorodeoxyglucose (FDG) represent promising biomarkers for risk-stratification of Prostate Cancer (PCa). We verified whether the expression of genes encoding for PSMA and enzymes regulating FDG cellular uptake are independent and additive prognosticators in PCa.mRNA expression of genes involved in glucose metabolism and PSMA regulation obtained from primary PCa specimens were retrieved from open-source databases and analyzed using an integrative bioinformatics approach. Machine Learning (ML) techniques were used to create predictive Progression-Free Survival (PFS) models. Cellular models of primary PCa with different aggressiveness were used to compare [18F]F-PSMA-1007 and [18F]F-FDG uptake kinetics in vitro. Confocal microscopy, immunofluorescence staining, and quantification analyses were performed to assess the intracellular and cellular membrane PSMA expression.ML analyses identified a predictive functional network involving four glucose metabolism-related genes: ALDOB, CTH, PARP2, and SLC2A4. By contrast, FOLH1 expression (encoding for PSMA) did not provide any additive predictive value to the model. At a cellular level, the increase in proliferation rate and migratory potential by primary PCa cells was associated with enhanced FDG uptake and decreased PSMA retention (paralleled by the preferential intracellular localization).The overexpression of a functional network involving four glucose metabolism-related genes identifies a higher risk of disease progression since the earliest phases of PCa, in agreement with the acknowledged prognostic value of FDG PET imaging. By contrast, the prognostic value of PSMA PET imaging is independent of the expression of its encoding gene FOLH1. Instead, it is influenced by the protein docking to the cell membrane, regulating its accessibility to tracer binding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
田様应助flyabc采纳,获得10
刚刚
情怀应助wzymjfan采纳,获得10
刚刚
coco完成签到,获得积分10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
圆头圆脑圆肚皮完成签到,获得积分10
1秒前
2秒前
2秒前
何111完成签到,获得积分10
2秒前
刘世敏完成签到,获得积分10
2秒前
3秒前
3秒前
甜甜的静柏完成签到,获得积分10
4秒前
4秒前
ychao发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
Frankyu发布了新的文献求助10
5秒前
Flipped完成签到,获得积分10
5秒前
凶狠的乐巧完成签到,获得积分10
6秒前
6秒前
岢岚完成签到,获得积分10
6秒前
小刘发布了新的文献求助10
7秒前
liushirui发布了新的文献求助10
7秒前
yu发布了新的文献求助10
7秒前
pignai完成签到,获得积分10
7秒前
发嗲的雨筠完成签到,获得积分10
8秒前
8秒前
jj发布了新的文献求助10
8秒前
Geoer发布了新的文献求助10
8秒前
xx发布了新的文献求助10
8秒前
9秒前
困敦发布了新的文献求助10
10秒前
发论文完成签到,获得积分10
11秒前
王志鹏完成签到 ,获得积分10
11秒前
11秒前
12秒前
mei发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406273
求助须知:如何正确求助?哪些是违规求助? 4524343
关于积分的说明 14097694
捐赠科研通 4438130
什么是DOI,文献DOI怎么找? 2435995
邀请新用户注册赠送积分活动 1428126
关于科研通互助平台的介绍 1406280