Ferroelectric Transistors for Memory and Neuromorphic Device Applications

铁电性 材料科学 非易失性存储器 晶体管 神经形态工程学 光电子学 记忆电阻器 纳米技术 电子工程 电气工程 计算机科学 电压 电介质 工程类 人工智能 人工神经网络
作者
Ik‐Jyae Kim,Jang‐Sik Lee
出处
期刊:Advanced Materials [Wiley]
卷期号:35 (22) 被引量:90
标识
DOI:10.1002/adma.202206864
摘要

Abstract Ferroelectric materials have been intensively investigated for high‐performance nonvolatile memory devices in the past decades, owing to their nonvolatile polarization characteristics. Ferroelectric memory devices are expected to exhibit lower power consumption and higher speed than conventional memory devices. However, non‐complementary metal–oxide–semiconductor (CMOS) compatibility and degradation due to fatigue of traditional perovskite‐based ferroelectric materials have hindered the development of high‐density and high‐performance ferroelectric memories in the past. The recently developed hafnia‐based ferroelectric materials have attracted immense attention in the development of advanced semiconductor devices. Because hafnia is typically used in CMOS processes, it can be directly incorporated into current semiconductor technologies. Additionally, hafnia‐based ferroelectrics show high scalability and large coercive fields that are advantageous for high‐density memory devices. This review summarizes the recent developments in ferroelectric devices, especially ferroelectric transistors, for next‐generation memory and neuromorphic applications. First, the types of ferroelectric memories and their operation mechanisms are reviewed. Then, issues limiting the realization of high‐performance ferroelectric transistors and possible solutions are discussed. The experimental demonstration of ferroelectric transistor arrays, including 3D ferroelectric NAND and its operation characteristics, are also reviewed. Finally, challenges and strategies toward the development of next‐generation memory and neuromorphic applications based on ferroelectric transistors are outlined.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盼盼完成签到,获得积分10
刚刚
脑洞疼应助半生采纳,获得30
刚刚
东东完成签到,获得积分10
刚刚
中岛悠斗完成签到,获得积分10
刚刚
LuLan0401完成签到,获得积分10
1秒前
1秒前
语秋完成签到,获得积分10
1秒前
耍酷青梦完成签到 ,获得积分10
1秒前
充电宝应助xhy采纳,获得10
1秒前
陈海伦完成签到 ,获得积分10
2秒前
2秒前
2秒前
小汤圆发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
曾曾完成签到,获得积分10
3秒前
721完成签到,获得积分10
4秒前
糟糕的雪糕完成签到,获得积分10
4秒前
谁能拒绝周杰伦呢完成签到,获得积分10
4秒前
MM完成签到,获得积分10
4秒前
千幻完成签到,获得积分10
4秒前
4秒前
完美世界应助娜行采纳,获得10
5秒前
Again完成签到,获得积分10
5秒前
科研小菜鸟完成签到,获得积分20
5秒前
胡枝子完成签到,获得积分10
6秒前
苹果从菡完成签到,获得积分10
6秒前
ooseabiscuit完成签到,获得积分10
6秒前
6秒前
淡淡的雪发布了新的文献求助10
6秒前
不打扰完成签到 ,获得积分10
7秒前
千幻发布了新的文献求助10
7秒前
crr发布了新的文献求助10
7秒前
7秒前
8秒前
jklwss完成签到,获得积分10
8秒前
sa完成签到,获得积分10
8秒前
8秒前
万能图书馆应助成就莞采纳,获得30
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672