已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flow Topology-based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks

计算机科学 网络拓扑 杠杆(统计) 入侵检测系统 分布式计算 图形 计算机网络 拓扑(电路) 数据挖掘 理论计算机科学 人工智能 数学 组合数学
作者
Xiaoheng Deng,Jincai Zhu,Xinjun Pei,Lan Zhang,Zhen Ling,Kaiping Xue
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2022.3213807
摘要

Given the distributed nature of the massively connected "Things" in IoT, IoT networks have been a primary target for cyberattacks. Although machine learning based network intrusion detection systems (NIDS) can effectively detect abnormal network traffic behaviors, most existing approaches are based on a large amount of labeled traffic flow data, which hinders their implementation in the highly dynamic IoT networks with limited labeling. In this paper, we develop a novel Flow Topology based Graph Convolutional Network (FT-GCN) approach for label-limited IoT network intrusion detection. Our main idea is to leverage the underlying traffic flow patterns, i.e., the flow topological structure, to unlock the full potential of the traffic flow data with limited labeling, where the FT-GCN will be deployed at the edge servers in IoT networks to detect intrusions via software defined network technologies. Specifically, FT-GCN first takes the time correlation of traffic flows into account to construct an interval-constrained traffic graph (ICTG). Besides, a Node-Level Spatial (NLS) attention mechanism is designed to further enhance the key statistical features of traffic flows in ICTG. Finally, the combined representation of statistical flow features and flow topological structure are learned by the cost-effective Topology Adaptive Graph Convolutional Networks (TAGCN) for intrusion identification in IoT networks. Extensive experiments are conducted on three real-world datasets, which demonstrate the effectiveness of the proposed FT-GCN compared to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赵心宇发布了新的文献求助10
2秒前
碳水化合物完成签到,获得积分0
3秒前
SciGPT应助hyhyhyhy采纳,获得10
5秒前
shanshan3000完成签到,获得积分10
5秒前
lei029完成签到,获得积分10
6秒前
ding应助PL采纳,获得10
8秒前
9秒前
有魅力敏完成签到,获得积分10
10秒前
小蘑菇应助外向的不尤采纳,获得10
10秒前
sxc完成签到,获得积分10
11秒前
鲤鱼初柳完成签到 ,获得积分10
11秒前
wanci应助夜雨声烦采纳,获得10
12秒前
13秒前
姚琛完成签到 ,获得积分10
15秒前
15秒前
英勇的红酒完成签到 ,获得积分10
17秒前
PL发布了新的文献求助10
20秒前
21秒前
23秒前
24秒前
24秒前
25秒前
南风吹梦完成签到,获得积分10
25秒前
pp发布了新的文献求助10
26秒前
26秒前
28秒前
pop完成签到,获得积分10
28秒前
小鲤鱼完成签到 ,获得积分10
30秒前
淡定从凝发布了新的文献求助10
33秒前
清欢完成签到,获得积分10
33秒前
37秒前
Lucas应助pp采纳,获得10
38秒前
花开富贵应助科研通管家采纳,获得10
38秒前
coolkid应助科研通管家采纳,获得10
38秒前
科研通AI5应助科研通管家采纳,获得10
38秒前
所所应助科研通管家采纳,获得10
38秒前
传奇3应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
38秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3994469
求助须知:如何正确求助?哪些是违规求助? 3534869
关于积分的说明 11266676
捐赠科研通 3274686
什么是DOI,文献DOI怎么找? 1806453
邀请新用户注册赠送积分活动 883298
科研通“疑难数据库(出版商)”最低求助积分说明 809749