Flow Topology-based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks

计算机科学 网络拓扑 杠杆(统计) 入侵检测系统 分布式计算 图形 计算机网络 拓扑(电路) 数据挖掘 理论计算机科学 人工智能 数学 组合数学
作者
Xiaoheng Deng,Jincai Zhu,Xinjun Pei,Lan Zhang,Zhen Ling,Kaiping Xue
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2022.3213807
摘要

Given the distributed nature of the massively connected "Things" in IoT, IoT networks have been a primary target for cyberattacks. Although machine learning based network intrusion detection systems (NIDS) can effectively detect abnormal network traffic behaviors, most existing approaches are based on a large amount of labeled traffic flow data, which hinders their implementation in the highly dynamic IoT networks with limited labeling. In this paper, we develop a novel Flow Topology based Graph Convolutional Network (FT-GCN) approach for label-limited IoT network intrusion detection. Our main idea is to leverage the underlying traffic flow patterns, i.e., the flow topological structure, to unlock the full potential of the traffic flow data with limited labeling, where the FT-GCN will be deployed at the edge servers in IoT networks to detect intrusions via software defined network technologies. Specifically, FT-GCN first takes the time correlation of traffic flows into account to construct an interval-constrained traffic graph (ICTG). Besides, a Node-Level Spatial (NLS) attention mechanism is designed to further enhance the key statistical features of traffic flows in ICTG. Finally, the combined representation of statistical flow features and flow topological structure are learned by the cost-effective Topology Adaptive Graph Convolutional Networks (TAGCN) for intrusion identification in IoT networks. Extensive experiments are conducted on three real-world datasets, which demonstrate the effectiveness of the proposed FT-GCN compared to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayyy完成签到,获得积分10
2秒前
YuLu发布了新的文献求助10
4秒前
赘婿应助wp0715采纳,获得10
4秒前
5秒前
fff完成签到,获得积分10
5秒前
6秒前
吴世勋fans发布了新的文献求助10
9秒前
ayyy发布了新的文献求助10
10秒前
11秒前
zewangguo完成签到,获得积分20
13秒前
夏侯乐枫完成签到,获得积分10
14秒前
Fareth完成签到,获得积分10
14秒前
定一发布了新的文献求助10
14秒前
17秒前
17秒前
18秒前
kirin完成签到,获得积分10
19秒前
28秒前
29秒前
顾矜应助zhengzhao采纳,获得10
31秒前
皮皮龙OVO发布了新的文献求助10
33秒前
34秒前
阳佟一斩完成签到 ,获得积分10
34秒前
yao发布了新的文献求助10
36秒前
fjg发布了新的文献求助10
38秒前
38秒前
刘海柱发布了新的文献求助10
40秒前
133发布了新的文献求助60
40秒前
星辰大海应助kirin采纳,获得10
41秒前
zi应助御风111采纳,获得10
41秒前
43秒前
43秒前
南山柴郎发布了新的文献求助10
43秒前
zi应助大nian柚子采纳,获得10
45秒前
zhengzhao发布了新的文献求助10
48秒前
50秒前
52秒前
英俊的铭应助满意之玉采纳,获得10
54秒前
Tony发布了新的文献求助10
56秒前
勤劳的汉堡完成签到,获得积分20
56秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3349006
求助须知:如何正确求助?哪些是违规求助? 2975178
关于积分的说明 8667779
捐赠科研通 2655842
什么是DOI,文献DOI怎么找? 1454247
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696