Flow Topology-based Graph Convolutional Network for Intrusion Detection in Label-Limited IoT Networks

计算机科学 网络拓扑 杠杆(统计) 入侵检测系统 分布式计算 图形 计算机网络 拓扑(电路) 数据挖掘 理论计算机科学 人工智能 数学 组合数学
作者
Xiaoheng Deng,Jincai Zhu,Xinjun Pei,Lan Zhang,Zhen Ling,Kaiping Xue
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2022.3213807
摘要

Given the distributed nature of the massively connected "Things" in IoT, IoT networks have been a primary target for cyberattacks. Although machine learning based network intrusion detection systems (NIDS) can effectively detect abnormal network traffic behaviors, most existing approaches are based on a large amount of labeled traffic flow data, which hinders their implementation in the highly dynamic IoT networks with limited labeling. In this paper, we develop a novel Flow Topology based Graph Convolutional Network (FT-GCN) approach for label-limited IoT network intrusion detection. Our main idea is to leverage the underlying traffic flow patterns, i.e., the flow topological structure, to unlock the full potential of the traffic flow data with limited labeling, where the FT-GCN will be deployed at the edge servers in IoT networks to detect intrusions via software defined network technologies. Specifically, FT-GCN first takes the time correlation of traffic flows into account to construct an interval-constrained traffic graph (ICTG). Besides, a Node-Level Spatial (NLS) attention mechanism is designed to further enhance the key statistical features of traffic flows in ICTG. Finally, the combined representation of statistical flow features and flow topological structure are learned by the cost-effective Topology Adaptive Graph Convolutional Networks (TAGCN) for intrusion identification in IoT networks. Extensive experiments are conducted on three real-world datasets, which demonstrate the effectiveness of the proposed FT-GCN compared to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
俊逸香岚完成签到,获得积分10
刚刚
刚刚
1111完成签到 ,获得积分10
刚刚
略略略完成签到,获得积分10
刚刚
刚刚
斯文败类应助林临采纳,获得10
刚刚
王斌东南大学完成签到,获得积分10
1秒前
superkang发布了新的文献求助10
1秒前
提莫蘑菇完成签到,获得积分10
1秒前
科研通AI6应助xiaoxiaohai采纳,获得30
1秒前
lililiiii完成签到,获得积分10
1秒前
冠心没有病完成签到,获得积分10
2秒前
没羽箭发布了新的文献求助10
3秒前
粒er完成签到 ,获得积分10
3秒前
Akim应助啦啦啦采纳,获得10
3秒前
茹茹完成签到 ,获得积分10
3秒前
浮游应助麦冬采纳,获得30
3秒前
qianqina发布了新的文献求助10
3秒前
3秒前
ddz发布了新的文献求助10
4秒前
梦漓完成签到 ,获得积分10
4秒前
4秒前
orixero应助不再选择采纳,获得10
4秒前
yongziwu完成签到,获得积分10
4秒前
jxj发布了新的文献求助10
5秒前
5秒前
R.润完成签到,获得积分10
5秒前
张鱼大丸子完成签到,获得积分10
5秒前
lingzhi完成签到 ,获得积分10
5秒前
luluzhu完成签到,获得积分10
5秒前
粒子耶完成签到,获得积分10
6秒前
ccm应助梓越采纳,获得10
6秒前
科研通AI2S应助zhiyao2025采纳,获得10
6秒前
6秒前
学习鱼完成签到,获得积分10
6秒前
小蘑菇应助happiness采纳,获得10
6秒前
xiaofeiyan完成签到 ,获得积分10
6秒前
zzz完成签到 ,获得积分10
6秒前
许个愿吧完成签到,获得积分10
7秒前
科研汪完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439