催化作用
纳米-
原位
细菌
材料科学
化学工程
粘附
抗菌活性
化学
纳米技术
有机化学
复合材料
生物
遗传学
工程类
作者
Zhihui Niu,Mingxiao Xie,Wei Wang,Yang Guo,Mengxuan Han,Yingying Ding,Jianyu Huang,Kang Zheng,Yao Zhang,Yuanda Song,Dechao Niu,Yongsheng Li,Guangwu Wen,Xiaowei Li,Jianlin Shi
标识
DOI:10.1002/adhm.202202441
摘要
Abstract Nano‐catalytic bacterial killing provides new opportunities to address ever‐increasing antibiotic resistance. However, the intrinsic catalytic activity usually depends on a much lower pH conditions (pH = 2–5) than that in the weakly acidic bacterial microenvironments (pH = 6–7) for reactive oxygen species production by Fenton reactions. Herein, a MnSiO 3 ‐based pH‐ultrasensitive “in situ structure transformation” is first reported to significantly promote the adhesion between material and bacteria, and shorten the diffusion distance (<20 nm) to compensate ultra‐short life (<200 ns) of ·OH generated by Mn 2+ ‐mediated Fenton‐like reaction, finally enhancing its nano‐catalytic antibacterial performance in weakly acidic conditions. A separated spray bottle is further designed to achieve in situ gelation at the wound site, which demonstrates excellent shape adaptability to complicated and rough surfaces of wounds, allowing for long‐term nano‐catalyst release. As a result, bacterial‐infected wound healing is efficiently promoted. Herein, the in situ sprayed nano‐catalytic antibacterial gel presents a promising paradigm for bacterial infection treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI