An improved PointNet++ point cloud segmentation model applied to automatic measurement method of pig body size

点云 分割 周长 人工智能 计算机科学 身体部位 计算机视觉 数学 几何学 医学 物理医学与康复
作者
Hao Hu,Yu Jincheng,Ling Yin,Cai Gengyuan,Sumin Zhang,Huan Zhang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:205: 107560-107560 被引量:39
标识
DOI:10.1016/j.compag.2022.107560
摘要

Currently, non-contact and automatic measurement of livestock body size is the research orientation of computer-aided livestock breeding and intelligent farming industry. However, directly locating the body size measurement key points on the dense overall point clouds of livestock often results in positioning deviation and affects the measurement accuracy. Additionally, various postures of livestock and the interference of different parts of livestock body are also prone to key points positioning deviations. For more accurate measurement of pig body size, we propose in our paper an improved PointNet++ point cloud segmentation model to subdivide the overall pig point clouds into various parts, such as the pig’s head, ears, trunk, limbs, and tail to localize the body measurement key points in the segmented local parts. A new body size measurement method based on segmentation results, which is integrated with the least squares, point cloud slicing, edge extraction, and polynomial fitting, is also presented in our study so that the pig body size parameters can be more accurately calculated. In our experiment, 25 live pigs and 207 groups of pig body point clouds were used for point cloud segmentation and body size measurements. Compared with manual measurements, the relative errors in our experimental results are listed as follows: body length: 2.57 %, body height (front): 2.18 %, body height (back): 2.28 %, body width (front): 4.56 %, body width (middle): 5.26 %, body width (back): 5.19 %, thoracic circumference: 2.50 %, abdominal circumference: 3.14 %, rump circumference: 2.85 %. To conclude, the new automatic measurement method based on the improved PointNet++ point cloud segmentation model with higher accuracy has a more promising application prospect thanks to its novel features, precise measurement results and stable robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
1秒前
1秒前
李爱国应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
研友_LJGpan应助科研通管家采纳,获得10
1秒前
EasyNan应助科研通管家采纳,获得20
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
于是真的完成签到,获得积分10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
共享精神应助科研通管家采纳,获得30
2秒前
文献完成签到,获得积分10
2秒前
科研通AI5应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得30
2秒前
2秒前
SYLH应助科研通管家采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得30
2秒前
研友_LJGpan应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
wkjfh应助科研通管家采纳,获得10
2秒前
所所应助科研通管家采纳,获得10
2秒前
3秒前
实验好难应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
娴娴超爱笑完成签到,获得积分10
3秒前
高高高发布了新的文献求助10
5秒前
6秒前
冷艳三颜发布了新的文献求助10
6秒前
7秒前
霸气谷蕊发布了新的文献求助10
7秒前
Yang发布了新的文献求助10
7秒前
8秒前
yy应助老Mark采纳,获得10
8秒前
yy应助老Mark采纳,获得10
8秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3740956
求助须知:如何正确求助?哪些是违规求助? 3283797
关于积分的说明 10036810
捐赠科研通 3000526
什么是DOI,文献DOI怎么找? 1646584
邀请新用户注册赠送积分活动 783787
科研通“疑难数据库(出版商)”最低求助积分说明 750427