Age-dependent Electroencephalogram Characteristics During Different Levels of Anesthetic Depth

脑电双频指数 麻醉剂 麻醉 医学 脑电图 样本熵 年龄组 熵(时间箭头) 镇静 人口学 物理 精神科 量子力学 社会学
作者
Feixiang Li,Yaoyao Dang,Xuan Zhang,Huimin Chen,Yuechun Lu,Yonghao Yu
出处
期刊:Clinical Eeg and Neuroscience [SAGE]
卷期号:: 155005942211426-155005942211426
标识
DOI:10.1177/15500594221142680
摘要

Objective The monitoring of anesthetic depth based on electroencephalogram derivation is not currently adjusted for age. Here we analyze the influence of age factors on electroencephalogram characteristics. Methods Frontal electroencephalogram recordings were obtained from 80 adults during routine clinical anesthesia. The characteristics of electroencephalogram with age and anesthesia were observed during four kinds of anesthesia. Results The slow wave power, δ power, Bispectral Index (BIS) and approximate entropy can be used to distinguish different states of anesthesia (P < 0.05). In the deep and very deep anesthesia states, δ power decreased with age (P < 0.0001). In the very deep anesthesia state, θ power decreased with age (P < 0.05). In the deep and very deep anesthesia states, α power decreased with age (P = 0.0002). In the light and deep anesthesia states, β power decreased with age (P = 0.003). In the deep anesthesia state, γ power decreased with age (P = 0.002). In the very deep anesthesia state, permutation entropy increased significantly with age (P = 0.0001). In the very deep anesthesia state, BIS value increased with age (P = 0.006). The slow wave power, approximate entropy, and sample entropy did not show age-dependent changes. Conclusions The influence of age should be considered when using BIS and δ power to monitor the depth of anesthesia, while the influence of age should not be considered when using slow wave power and approximate entropy to monitor the depth of anesthesia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MARS完成签到,获得积分10
刚刚
HEIKU应助鲤鱼凛采纳,获得10
1秒前
自然的依丝完成签到,获得积分20
1秒前
step_stone完成签到,获得积分10
2秒前
愉快彩虹发布了新的文献求助10
2秒前
cdu完成签到,获得积分10
3秒前
星辰轨迹完成签到,获得积分10
3秒前
MARS发布了新的文献求助10
3秒前
Jenny应助哈尼妞妞122采纳,获得10
3秒前
岁月轮回发布了新的文献求助10
4秒前
MADKAI发布了新的文献求助10
4秒前
高文强完成签到,获得积分10
4秒前
4秒前
习习应助坚定的诗双采纳,获得10
4秒前
4秒前
er完成签到,获得积分20
5秒前
科研通AI2S应助夯大力采纳,获得10
5秒前
5秒前
5秒前
Hover发布了新的文献求助10
5秒前
852应助无情的白桃采纳,获得10
6秒前
飘逸问薇完成签到 ,获得积分10
7秒前
SYLH应助机智的白猫采纳,获得10
8秒前
大模型应助笑点低蜜蜂采纳,获得10
8秒前
8秒前
CodeCraft应助RRRIGO采纳,获得10
8秒前
凯凯完成签到 ,获得积分10
8秒前
萌萌发布了新的文献求助10
8秒前
yy关闭了yy文献求助
8秒前
kingmin完成签到,获得积分10
8秒前
9秒前
尼克拉倒完成签到,获得积分10
9秒前
milo6666发布了新的文献求助10
10秒前
等待的乐儿完成签到,获得积分20
10秒前
10秒前
11秒前
12秒前
烟花应助醉人的仔采纳,获得10
12秒前
Relax发布了新的文献求助10
12秒前
元元完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759