mTORC1型
溶酶体
细胞内
生物化学
细胞生物学
化学
生物
信号转导
酶
PI3K/AKT/mTOR通路
作者
Aaron M. Hosios,Meghan E. Wilkinson,Molly C. McNamara,Krystle Kalafut,Margaret E. Torrence,John M. Asara,Brendan D. Manning
标识
DOI:10.1038/s42255-022-00706-6
摘要
The mechanistic target of rapamycin complex 1 (mTORC1) senses and relays environmental signals from growth factors and nutrients to metabolic networks and adaptive cellular systems to control the synthesis and breakdown of macromolecules; however, beyond inducing de novo lipid synthesis, the role of mTORC1 in controlling cellular lipid content remains poorly understood. Here we show that inhibition of mTORC1 via small molecule inhibitors or nutrient deprivation leads to the accumulation of intracellular triglycerides in both cultured cells and a mouse tumor model. The elevated triglyceride pool following mTORC1 inhibition stems from the lysosome-dependent, but autophagy-independent, hydrolysis of phospholipid fatty acids. The liberated fatty acids are available for either triglyceride synthesis or β-oxidation. Distinct from the established role of mTORC1 activation in promoting de novo lipid synthesis, our data indicate that mTORC1 inhibition triggers membrane phospholipid trafficking to the lysosome for catabolism and an adaptive shift in the use of constituent fatty acids for storage or energy production. Hosios et al. demonstrate that inhibition of mechanistic target of rapamycin complex 1 in cells and in tumors in mice leads to a lysosome-dependent but autophagy-independent shift in membrane lipid metabolism, resulting in increased intracellular triglyceride pools.
科研通智能强力驱动
Strongly Powered by AbleSci AI