Evaluation of Dimensionality Reduction of Hyperspectral Images for Spatial-Spectral Classification Framework

高光谱成像 主成分分析 模式识别(心理学) 降维 人工智能 预处理器 计算机科学 特征提取 线性判别分析 支持向量机 滤波器(信号处理) 空间分析 核(代数) 独立成分分析 数学 计算机视觉 统计 组合数学
作者
Neelam Agrawal,Himanshu Govil,Sudipta Mukherjee
标识
DOI:10.1109/icccmla56841.2022.9988758
摘要

Hyperspectral remote sensing facilitates detailed information about a ground scene or object of interest through three-dimensional hyperspectral images. These images are essentially composed of hundreds of two-dimensional image bands, which are the accumulation of spectral reflectance from visible to infrared wavelength range. These hyperspectral images potentially hold a wealth of spectral and spatial information that enables fine separation among similar surface objects. However, these high-dimensional datasets also contain redundant and correlated information, which brings several challenges during the classification process. Therefore, dimensionality reduction becomes a crucial preprocessing step for extracting relevant and compact information. The present study aims to evaluate various feature extraction based dimensionality reduction (DR) techniques such as Independent Component Analysis (ICA), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and kernel Principal Component Analysis (kPCA) for spectral-spatial classification framework. These techniques are employed to extract meaningful and compact spectral features. However, spatial filters such as the Gabor filter, Entropy Filter, Standard Deviation Filter, and Range Filter are utilized to extract spatial features. The spectral and spatial features are merged together for Support Vector Machine (SVM) based classification. The experimentation has been performed with Indian Pines and Pavia University Scene hyperspectral datasets. The results demonstrate that the PCA technique outperformed others in terms of overall accuracy for these datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助shor0414采纳,获得10
刚刚
ponyy发布了新的文献求助30
1秒前
秋之月发布了新的文献求助10
2秒前
skier发布了新的文献求助10
3秒前
balabala完成签到,获得积分20
3秒前
隐形曼青应助kb采纳,获得10
4秒前
yanyan发布了新的文献求助10
6秒前
繁笙完成签到 ,获得积分10
6秒前
6秒前
无言完成签到 ,获得积分10
6秒前
NONO完成签到 ,获得积分10
7秒前
星辰大海应助TT采纳,获得10
7秒前
9秒前
康康完成签到,获得积分10
9秒前
Xv完成签到,获得积分0
9秒前
12秒前
12秒前
香蕉觅云应助zfzf0422采纳,获得10
12秒前
13秒前
13秒前
李健应助爱听歌的向日葵采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
烟花应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得80
14秒前
所所应助科研通管家采纳,获得20
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
Owen应助科研通管家采纳,获得30
15秒前
婷婷发布了新的文献求助10
15秒前
zzt完成签到,获得积分10
17秒前
张小汉发布了新的文献求助30
18秒前
二十四发布了新的文献求助10
18秒前
赘婿应助junzilan采纳,获得10
18秒前
FashionBoy应助勤恳的雨文采纳,获得10
18秒前
aaa完成签到,获得积分10
19秒前
20秒前
11111完成签到,获得积分20
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824