Evaluation of Dimensionality Reduction of Hyperspectral Images for Spatial-Spectral Classification Framework

高光谱成像 主成分分析 模式识别(心理学) 降维 人工智能 预处理器 计算机科学 特征提取 线性判别分析 支持向量机 滤波器(信号处理) 空间分析 核(代数) 独立成分分析 数学 计算机视觉 统计 组合数学
作者
Neelam Agrawal,Himanshu Govil,Sudipta Mukherjee
标识
DOI:10.1109/icccmla56841.2022.9988758
摘要

Hyperspectral remote sensing facilitates detailed information about a ground scene or object of interest through three-dimensional hyperspectral images. These images are essentially composed of hundreds of two-dimensional image bands, which are the accumulation of spectral reflectance from visible to infrared wavelength range. These hyperspectral images potentially hold a wealth of spectral and spatial information that enables fine separation among similar surface objects. However, these high-dimensional datasets also contain redundant and correlated information, which brings several challenges during the classification process. Therefore, dimensionality reduction becomes a crucial preprocessing step for extracting relevant and compact information. The present study aims to evaluate various feature extraction based dimensionality reduction (DR) techniques such as Independent Component Analysis (ICA), Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and kernel Principal Component Analysis (kPCA) for spectral-spatial classification framework. These techniques are employed to extract meaningful and compact spectral features. However, spatial filters such as the Gabor filter, Entropy Filter, Standard Deviation Filter, and Range Filter are utilized to extract spatial features. The spectral and spatial features are merged together for Support Vector Machine (SVM) based classification. The experimentation has been performed with Indian Pines and Pavia University Scene hyperspectral datasets. The results demonstrate that the PCA technique outperformed others in terms of overall accuracy for these datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
花粉过敏完成签到,获得积分10
1秒前
KXQ发布了新的文献求助10
1秒前
科研通AI2S应助敲敲采纳,获得10
1秒前
霜序完成签到,获得积分10
2秒前
水蔓菁完成签到,获得积分10
2秒前
momo完成签到 ,获得积分10
2秒前
2秒前
2秒前
还单身的老虎完成签到,获得积分10
2秒前
Mashiro完成签到,获得积分10
2秒前
无花果应助优雅的听兰采纳,获得10
3秒前
真实的南琴完成签到,获得积分10
4秒前
4秒前
勤奋白昼完成签到,获得积分20
4秒前
CodeCraft应助gan采纳,获得10
5秒前
英俊的铭应助0000采纳,获得10
5秒前
5秒前
xxx发布了新的文献求助10
7秒前
7秒前
yang发布了新的文献求助30
7秒前
李爱国应助KXQ采纳,获得10
7秒前
7秒前
7秒前
雪白的小土豆完成签到,获得积分10
7秒前
tuiiao完成签到 ,获得积分10
8秒前
黄礼韬发布了新的文献求助10
9秒前
李四发布了新的文献求助10
11秒前
qing完成签到,获得积分10
11秒前
12秒前
XY发布了新的文献求助10
13秒前
Zhang完成签到,获得积分20
13秒前
深情安青应助17采纳,获得10
14秒前
15秒前
小满关注了科研通微信公众号
17秒前
拉长的蓝完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
勤奋白昼发布了新的文献求助10
19秒前
19秒前
19秒前
19秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049