Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Batteries

锂(药物) 插层(化学) 材料科学 电极 储能 共价有机骨架 纳米技术 密度泛函理论 电池(电) 多孔性 化学工程 离子 共价键 无机化学 复合材料 化学 有机化学 物理化学 计算化学 热力学 功率(物理) 医学 内分泌学 工程类 物理
作者
Nilima Sinha,Himani Joshi,Srimanta Pakhira
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:4 (12): 6237-6252 被引量:5
标识
DOI:10.1021/acsaelm.2c01363
摘要

Increasing global energy demand urgently requires a sustainable energy storage device. Lithium-ion battery (LIB) technology has gathered wide attention toward the development of reliable, efficient, and sustainable energy storage systems. Despite all these advantages, designing an electrode material of LIBs with large cycle life, high specific capacity, and rate performance all at the same time remains a major challenge. Very recently, covalent organic frameworks (in short COFs) have attracted immense attention as an electrode material for efficient Li storage in a LIB due to their incredibly diverse and tunable structures. Here, we have studied a highly porous and semiconducting COF, i.e., COF-IITI-0, as an electrode material for the storage of Li atoms in a LIB. A hybrid periodic density functional theory (DFT) method has been implemented to investigate the Li intercalation mechanism, framework and electronic properties, and its theoretical capacity and average voltage. We report the lithium atom intercalation in the pristine COF-IITI-0 material consisting of maximum active groups (C6H4, C3N3, BO2C2) when it is used as electrode materials for LIBs. It has the highest capacity among the most polymer-based electrode materials so far. For the highest amount of lithium (up to 10 Li) atoms intercalated in the unit cell of the pure COF-IITI-0, it has been computationally predicted that the material would have a large theoretical capacity of 369 mAh g–1 with the highest average voltage about 4.8 eV. Therefore, we can say that the pristine COF-IITI-0 porous COF may be an auspicious effective electrode material for LIBs with such superior capacity and cell voltage. This work lays the foundation for future experimental exploration of Li-intercalated COFs for Li storage applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
CeciliaLee发布了新的文献求助10
刚刚
1秒前
闪闪的正豪完成签到,获得积分10
1秒前
myheat完成签到,获得积分10
2秒前
勤奋安波完成签到,获得积分10
2秒前
安安发布了新的文献求助10
2秒前
Amazing_p完成签到,获得积分10
2秒前
2秒前
2秒前
张千万完成签到,获得积分10
3秒前
11发布了新的文献求助40
3秒前
西西完成签到,获得积分10
4秒前
QWE发布了新的文献求助10
4秒前
Jian发布了新的文献求助10
4秒前
笨维发布了新的文献求助10
4秒前
4秒前
好多鱼爱学习完成签到 ,获得积分10
4秒前
屈昭阳发布了新的文献求助10
5秒前
baobaoxiong完成签到,获得积分10
5秒前
5秒前
5秒前
蒋若风发布了新的文献求助10
5秒前
6秒前
songyk完成签到,获得积分10
6秒前
zhoumin完成签到,获得积分10
7秒前
7秒前
高高问夏完成签到,获得积分10
8秒前
8秒前
9秒前
jingjing完成签到 ,获得积分10
9秒前
10秒前
君尧发布了新的文献求助10
10秒前
FashionBoy应助王宽宽宽采纳,获得10
10秒前
10秒前
科研通AI6应助王志新采纳,获得10
10秒前
11秒前
魏家乐完成签到,获得积分10
11秒前
wyuwqhjp发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836