Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Batteries

锂(药物) 插层(化学) 材料科学 电极 储能 共价有机骨架 纳米技术 密度泛函理论 电池(电) 多孔性 化学工程 离子 共价键 无机化学 复合材料 化学 有机化学 物理化学 计算化学 热力学 医学 工程类 内分泌学 功率(物理) 物理
作者
Nilima Sinha,Himani Joshi,Srimanta Pakhira
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:4 (12): 6237-6252 被引量:5
标识
DOI:10.1021/acsaelm.2c01363
摘要

Increasing global energy demand urgently requires a sustainable energy storage device. Lithium-ion battery (LIB) technology has gathered wide attention toward the development of reliable, efficient, and sustainable energy storage systems. Despite all these advantages, designing an electrode material of LIBs with large cycle life, high specific capacity, and rate performance all at the same time remains a major challenge. Very recently, covalent organic frameworks (in short COFs) have attracted immense attention as an electrode material for efficient Li storage in a LIB due to their incredibly diverse and tunable structures. Here, we have studied a highly porous and semiconducting COF, i.e., COF-IITI-0, as an electrode material for the storage of Li atoms in a LIB. A hybrid periodic density functional theory (DFT) method has been implemented to investigate the Li intercalation mechanism, framework and electronic properties, and its theoretical capacity and average voltage. We report the lithium atom intercalation in the pristine COF-IITI-0 material consisting of maximum active groups (C6H4, C3N3, BO2C2) when it is used as electrode materials for LIBs. It has the highest capacity among the most polymer-based electrode materials so far. For the highest amount of lithium (up to 10 Li) atoms intercalated in the unit cell of the pure COF-IITI-0, it has been computationally predicted that the material would have a large theoretical capacity of 369 mAh g–1 with the highest average voltage about 4.8 eV. Therefore, we can say that the pristine COF-IITI-0 porous COF may be an auspicious effective electrode material for LIBs with such superior capacity and cell voltage. This work lays the foundation for future experimental exploration of Li-intercalated COFs for Li storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
XuanZhang完成签到,获得积分10
刚刚
阿拉艾浩基完成签到,获得积分10
刚刚
1秒前
wnx001111完成签到,获得积分10
1秒前
1秒前
Derek完成签到,获得积分10
1秒前
hujuan完成签到 ,获得积分10
2秒前
食虫蚁完成签到 ,获得积分10
2秒前
坚定的若枫完成签到,获得积分10
2秒前
math123完成签到,获得积分10
2秒前
乐观的海发布了新的文献求助10
2秒前
2秒前
努力学习冲冲冲应助wh采纳,获得10
3秒前
4秒前
zhanghaha完成签到 ,获得积分10
4秒前
ZSJ完成签到,获得积分10
4秒前
充电宝应助Cherry采纳,获得10
4秒前
NSS完成签到 ,获得积分10
4秒前
ss完成签到,获得积分10
5秒前
shi hui发布了新的文献求助10
5秒前
热情大树发布了新的文献求助10
5秒前
坦率的豪英完成签到,获得积分10
6秒前
Attempter完成签到,获得积分10
6秒前
双月完成签到,获得积分10
6秒前
6秒前
6秒前
SciGPT应助qsw采纳,获得10
6秒前
山君发布了新的文献求助10
7秒前
晚湖发布了新的文献求助10
7秒前
煎饼果子不加葱完成签到,获得积分10
7秒前
霸气的代天完成签到,获得积分10
8秒前
Yiming_Cui_TJU完成签到,获得积分10
8秒前
在水一方应助小巧的傲松采纳,获得10
8秒前
9秒前
搜集达人应助跳跃的紫文采纳,获得10
9秒前
小鸭子完成签到,获得积分0
9秒前
9秒前
10秒前
YR发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402234
求助须知:如何正确求助?哪些是违规求助? 4520826
关于积分的说明 14082112
捐赠科研通 4434847
什么是DOI,文献DOI怎么找? 2434434
邀请新用户注册赠送积分活动 1426649
关于科研通互助平台的介绍 1405392