Lithium Intercalation in Covalent Organic Frameworks: A Porous Electrode Material for Lithium-Ion Batteries

锂(药物) 插层(化学) 材料科学 电极 储能 共价有机骨架 纳米技术 密度泛函理论 电池(电) 多孔性 化学工程 离子 共价键 无机化学 复合材料 化学 有机化学 物理化学 计算化学 热力学 医学 工程类 内分泌学 功率(物理) 物理
作者
Nilima Sinha,Himani Joshi,Srimanta Pakhira
出处
期刊:ACS applied electronic materials [American Chemical Society]
卷期号:4 (12): 6237-6252 被引量:5
标识
DOI:10.1021/acsaelm.2c01363
摘要

Increasing global energy demand urgently requires a sustainable energy storage device. Lithium-ion battery (LIB) technology has gathered wide attention toward the development of reliable, efficient, and sustainable energy storage systems. Despite all these advantages, designing an electrode material of LIBs with large cycle life, high specific capacity, and rate performance all at the same time remains a major challenge. Very recently, covalent organic frameworks (in short COFs) have attracted immense attention as an electrode material for efficient Li storage in a LIB due to their incredibly diverse and tunable structures. Here, we have studied a highly porous and semiconducting COF, i.e., COF-IITI-0, as an electrode material for the storage of Li atoms in a LIB. A hybrid periodic density functional theory (DFT) method has been implemented to investigate the Li intercalation mechanism, framework and electronic properties, and its theoretical capacity and average voltage. We report the lithium atom intercalation in the pristine COF-IITI-0 material consisting of maximum active groups (C6H4, C3N3, BO2C2) when it is used as electrode materials for LIBs. It has the highest capacity among the most polymer-based electrode materials so far. For the highest amount of lithium (up to 10 Li) atoms intercalated in the unit cell of the pure COF-IITI-0, it has been computationally predicted that the material would have a large theoretical capacity of 369 mAh g–1 with the highest average voltage about 4.8 eV. Therefore, we can say that the pristine COF-IITI-0 porous COF may be an auspicious effective electrode material for LIBs with such superior capacity and cell voltage. This work lays the foundation for future experimental exploration of Li-intercalated COFs for Li storage applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
起风了完成签到,获得积分10
刚刚
1秒前
Zjn-完成签到,获得积分10
1秒前
良辰应助lost采纳,获得10
1秒前
靓丽梦桃完成签到,获得积分20
2秒前
2秒前
0306完成签到,获得积分10
2秒前
李创业完成签到,获得积分10
2秒前
庆次完成签到 ,获得积分10
3秒前
ZY发布了新的文献求助10
3秒前
36456657应助跳跃的罡采纳,获得10
3秒前
36456657应助跳跃的罡采纳,获得10
3秒前
pluto应助跳跃的罡采纳,获得10
3秒前
丘比特应助跳跃的罡采纳,获得10
3秒前
3秒前
左手树完成签到,获得积分10
4秒前
4秒前
踏实的似狮完成签到,获得积分10
4秒前
正直画笔完成签到 ,获得积分10
4秒前
草履虫完成签到 ,获得积分10
5秒前
靓丽梦桃发布了新的文献求助10
5秒前
李创业发布了新的文献求助10
6秒前
炙热冰夏发布了新的文献求助10
6秒前
autobot1完成签到,获得积分10
6秒前
科研通AI5应助111采纳,获得10
6秒前
烟花应助Wang采纳,获得10
6秒前
曼尼发布了新的文献求助10
6秒前
赘婿应助桑姊采纳,获得10
8秒前
斯文败类应助Lvj采纳,获得10
8秒前
SYLH应助YHL采纳,获得10
8秒前
ranqi完成签到,获得积分10
8秒前
8秒前
9秒前
17808352679发布了新的文献求助10
9秒前
易生完成签到,获得积分10
10秒前
细腻曼冬完成签到 ,获得积分10
10秒前
10秒前
10秒前
9209完成签到 ,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762