Unsupervised fault diagnosis of wind turbine bearing via a deep residual deformable convolution network based on subdomain adaptation under time-varying speeds

计算机科学 残余物 断层(地质) 卷积(计算机科学) 涡轮机 方位(导航) 人工智能 特征(语言学) 深度学习 时域 模式识别(心理学) 代表(政治) 人工神经网络 算法 计算机视觉 地震学 哲学 工程类 地质学 机械工程 语言学 政治 法学 政治学
作者
Pengfei Liang,Bin Wang,Guoqian Jiang,Na Li,Lijie Zhang
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:118: 105656-105656 被引量:46
标识
DOI:10.1016/j.engappai.2022.105656
摘要

Recent years have seen the rapid development and marvelous achievement of deep learning-based fault diagnosis (FD) methods which assume that training data and testing data have the same distribution. However, in real FD of wind turbine bearing (WTB), the particularity of time-varying speeds makes a huge difference in the distribution of training data and testing data, greatly increasing the difficulty of FD. Accordingly, in this paper, a novel deep residual deformable subdomain adaptation framework is proposed for cross-domain failure diagnosis of WTB under time-varying speeds. In the proposed approach, the traditional residual network is improved by using a deformable convolution module to replace plain counterparts, which can make the feature representation of an object adapt its configuration and enhance the ability of the model to extract transferable features. Moreover, the popular FD model based on domain adversarial neural nets and global maximum mean discrepancy is improved by removing the adversarial training mechanism and employing a local maximum mean discrepancy to align the distributions of the identical fault type in different domains, making the diagnostic model simpler and more efficient. Two experimental cases under time-varying speeds are conducted to analyze the performance of the proposed approach and the results indicate that this method can utilize the knowledge in the source domain to diagnose the fault in the target domain. Compared with the existing methods, the diagnosis accuracy and efficiency are significantly improved, demonstrating its effectiveness and potential applications in fault transfer diagnosis of wind turbine bearing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
烟花应助风中的糖豆采纳,获得10
6秒前
雪白的夜阑完成签到 ,获得积分10
7秒前
10秒前
11秒前
加油加油完成签到 ,获得积分10
12秒前
周圈圈完成签到 ,获得积分10
12秒前
13秒前
顾矜应助XUXH采纳,获得10
13秒前
123发布了新的文献求助10
14秒前
斯文败类应助健忘的帽子采纳,获得30
15秒前
15秒前
苏苏发布了新的文献求助10
18秒前
sunyy发布了新的文献求助10
19秒前
QF发布了新的文献求助10
19秒前
李健的粉丝团团长应助123采纳,获得10
20秒前
22秒前
zpl发布了新的文献求助10
27秒前
小二郎应助明芬采纳,获得10
28秒前
leilei完成签到 ,获得积分10
29秒前
爱科研的莉莉君完成签到,获得积分10
30秒前
天天快乐应助999采纳,获得10
34秒前
36秒前
YY发布了新的文献求助30
36秒前
bkagyin应助迷人的绮山采纳,获得10
36秒前
40秒前
开心依白发布了新的文献求助30
41秒前
42秒前
王爷教你白给完成签到 ,获得积分10
42秒前
一一一完成签到 ,获得积分10
44秒前
里昂123发布了新的文献求助10
46秒前
明芬发布了新的文献求助10
47秒前
51秒前
顺利小陈发布了新的文献求助10
54秒前
55秒前
55秒前
shy完成签到 ,获得积分10
59秒前
情怀应助黎某采纳,获得10
59秒前
1分钟前
顺利小陈完成签到,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Restraining Hand: Captivity for Christ in China 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376688
求助须知:如何正确求助?哪些是违规求助? 2992619
关于积分的说明 8751982
捐赠科研通 2676972
什么是DOI,文献DOI怎么找? 1466377
科研通“疑难数据库(出版商)”最低求助积分说明 678292
邀请新用户注册赠送积分活动 669907