Multiple Genetic Syndromes Recognition Based on a Deep Learning Framework and Cross-Loss Training

计算机科学 人工智能 深度学习 学习迁移 鉴定(生物学) 机器学习 遗传算法 面部识别系统 任务(项目管理) 人工神经网络 遗传综合征 模式识别(心理学) 医学 生物 植物 管理 儿科 经济
作者
Jianfeng Wang,Bo Liang,Lijun Zhao,Yuanfang Chen,Fu Wen,Peiji Yu,Hongbing Chen,Hongying Wang,Guojie Xie,Ting Wu,Muhammad Alam,Haitao Lv,Lin He
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 117084-117092 被引量:6
标识
DOI:10.1109/access.2022.3218160
摘要

Many patients with genetic syndromes have special facial features, which boast significant potential value for clinical diagnosis. Deep learning and computer vision technology can be employed to diagnose genetic diseases by analyzing facial features of patients. As a matter of fact, the application of deep learning technology in the area of genetic diseases is confined owing to the difficulties of patient data acquisition. This study develops BioFace, a deep learning framework that can recognize multiple genetic diseases facial attributes based on limited datasets. BioFace is a deep neural network architecture designed premised on Resnet. To increase the weight of effective features and weaken the weight of invalid or unobvious features during extraction of facial features, we add Squeeze-and-Excitation (SE) blocks in the network. In combination with this network architecture, we designed a cross-loss training method based on transfer learning. This method can transfer the ability learned from the task of face identification to the task of recognition of genetic diseases facial attribute, and improve the inter-class distance of different genetic diseases and the intra-class distance of similar genetic diseases simultaneously. These render it possible for deep learning to be applied to recognition of multiple genetic diseases facial attribute with very small amount of data. In this research, we tested 10 syndromes with our framework and the Top-1 accuracy was 93.5%, which is the state-of-the-art in multiple genetic syndromes recognition research. In practical clinical applications, our framework and methods can be extended to the disease identification of more small datasets, potentially offering valuable assistance for the auxiliary clinical application of genetic diagnosis and other related genetic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aa1718发布了新的文献求助10
2秒前
Orange应助遮宁采纳,获得200
5秒前
6秒前
7秒前
程勋航完成签到,获得积分10
9秒前
上官若男应助天真小甜瓜采纳,获得20
9秒前
至秦完成签到,获得积分10
11秒前
谨慎长颈鹿完成签到,获得积分10
12秒前
红绿蓝完成签到,获得积分10
13秒前
13秒前
丁丁丁完成签到,获得积分10
13秒前
一与余完成签到,获得积分10
15秒前
陈静怡发布了新的文献求助10
16秒前
YANGJIE6发布了新的文献求助10
18秒前
大伟还是文章读少了完成签到 ,获得积分10
18秒前
苏尔琳诺完成签到,获得积分10
19秒前
虚幻的夜天完成签到 ,获得积分10
20秒前
ll完成签到 ,获得积分10
20秒前
22秒前
23秒前
没有人歌颂完成签到,获得积分10
24秒前
25秒前
萧水白应助yuzhongdelianyi采纳,获得10
25秒前
步步完成签到 ,获得积分10
28秒前
shaoyu发布了新的文献求助10
28秒前
29秒前
klb13应助黄小强采纳,获得10
31秒前
34秒前
huanglihong发布了新的文献求助10
37秒前
38秒前
Zhu给Zhu的求助进行了留言
38秒前
39秒前
搜集达人应助YANGJIE6采纳,获得10
42秒前
43秒前
huanglihong完成签到,获得积分20
44秒前
领导范儿应助卡司采纳,获得10
44秒前
aa1718完成签到,获得积分20
44秒前
困困咪应助kuka007采纳,获得10
46秒前
梨小7完成签到,获得积分10
48秒前
共享精神应助Xppcjlan采纳,获得10
51秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578