可转让性
相图
原子间势
分子动力学
碳纤维
计算机科学
比例(比率)
材料科学
统计物理学
相(物质)
计算科学
算法
物理
机器学习
量子力学
罗伊特
复合数
作者
Jonathan Willman,Kien Nguyen-Cong,Ashley Williams,Anatoly B. Belonoshko,Stan Moore,Aidan P. Thompson,Mitchell Wood,Ivan Oleynik
出处
期刊:Physical review
日期:2022-11-30
卷期号:106 (18)
被引量:23
标识
DOI:10.1103/physrevb.106.l180101
摘要
A spectral neighbor analysis (SNAP) machine learning interatomic potential (MLIP) has been developed for simulations of carbon at extreme pressures (up to $5\phantom{\rule{0.16em}{0ex}}\mathrm{TPa}$) and temperatures (up to 20 000 K). This was achieved using a large database of experimentally relevant quantum molecular dynamics (QMD) data, training the SNAP potential using a robust machine learning methodology, and performing extensive validation against QMD and experimental data. The resultant carbon MLIP demonstrates unprecedented accuracy and transferability in predicting the carbon phase diagram, melting curves of crystalline phases, and the shock Hugoniot, all within 3% of QMD. By achieving quantum accuracy and efficient implementation on leadership-class high-performance computing systems, SNAP advances frontiers of classical MD simulations by enabling atomic-scale insights at experimental time and length scales.
科研通智能强力驱动
Strongly Powered by AbleSci AI