Development and evaluation of a risk algorithm predicting alcohol dependence after early onset of regular alcohol use

心理学 酒精依赖 医学 算法 临床心理学 精神科 计算机科学 化学 生物化学
作者
Chrianna Bharat,Meyer D. Glantz,Sergio Aguilar‐Gaxiola,Jordi Alonso,Ronny Bruffaerts,Brendan Bunting,José Miguel Caldas‐de‐Almeida,Graça Cardoso,Stephanie Chardoul,Peter de Jonge,Oye Gureje,Josep María Haro,Meredith Harris,Elie G. Karam,Norito Kawakami,Andrzej Kiejna,Viviane Kovess–Masféty,Sing Lee,John J. McGrath,Jacek Moskalewicz,Fernando Navarro‐Mateu,Charlene Rapsey,Nancy A. Sampson,Kate M. Scott,Hisateru Tachimori,Margreet ten Have,Gemma Vilagut,Bogdan Wojtyniak,Miguel Xavier,Ronald C. Kessler,Louisa Degenhardt
出处
期刊:Addiction [Wiley]
卷期号:118 (5): 954-966 被引量:4
标识
DOI:10.1111/add.16122
摘要

Abstract Aims Likelihood of alcohol dependence (AD) is increased among people who transition to greater levels of alcohol involvement at a younger age. Indicated interventions delivered early may be effective in reducing risk, but could be costly. One way to increase cost‐effectiveness would be to develop a prediction model that targeted interventions to the subset of youth with early alcohol use who are at highest risk of subsequent AD. Design A prediction model was developed for DSM‐IV AD onset by age 25 years using an ensemble machine‐learning algorithm known as ‘Super Learner’. Shapley additive explanations (SHAP) assessed variable importance. Setting and Participants Respondents reporting early onset of regular alcohol use (i.e. by 17 years of age) who were aged 25 years or older at interview from 14 representative community surveys conducted in 13 countries as part of WHO's World Mental Health Surveys. Measurements The primary outcome to be predicted was onset of life‐time DSM‐IV AD by age 25 as measured using the Composite International Diagnostic Interview, a fully structured diagnostic interview. Findings AD prevalence by age 25 was 5.1% among the 10 687 individuals who reported drinking alcohol regularly by age 17. The prediction model achieved an external area under the curve [0.78; 95% confidence interval (CI) = 0.74–0.81] higher than any individual candidate risk model (0.73–0.77) and an area under the precision‐recall curve of 0.22. Overall calibration was good [integrated calibration index (ICI) = 1.05%]; however, miscalibration was observed at the extreme ends of the distribution of predicted probabilities. Interventions provided to the 20% of people with highest risk would identify 49% of AD cases and require treating four people without AD to reach one with AD. Important predictors of increased risk included younger onset of alcohol use, males, higher cohort alcohol use and more mental disorders. Conclusions A risk algorithm can be created using data collected at the onset of regular alcohol use to target youth at highest risk of alcohol dependence by early adulthood. Important considerations remain for advancing the development and practical implementation of such models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
动听秋完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
Feathamity发布了新的文献求助10
2秒前
高贵的书包完成签到,获得积分10
2秒前
2秒前
舒心的雍发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
2秒前
Victoria完成签到,获得积分10
3秒前
含蓄馒头完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
5秒前
5秒前
5秒前
鳗鱼文涛完成签到,获得积分20
5秒前
十一完成签到,获得积分10
5秒前
含蓄馒头发布了新的文献求助10
6秒前
然然完成签到 ,获得积分10
7秒前
jing发布了新的文献求助30
7秒前
查查发布了新的文献求助10
7秒前
传奇3应助黄俊采纳,获得10
8秒前
8秒前
8秒前
baiyi完成签到 ,获得积分10
9秒前
Xin发布了新的文献求助30
9秒前
时光机带哥走完成签到 ,获得积分10
9秒前
7777发布了新的文献求助10
9秒前
gbjjj666发布了新的文献求助30
10秒前
丘比特应助ff采纳,获得10
10秒前
科研通AI6.1应助屋子采纳,获得10
10秒前
LXL完成签到 ,获得积分10
10秒前
小马甲应助eason采纳,获得10
11秒前
万能图书馆应助Judy采纳,获得10
11秒前
希望天下0贩的0应助zachary采纳,获得10
11秒前
lily应助jessie采纳,获得20
11秒前
12秒前
fanyy发布了新的文献求助10
12秒前
斯文败类应助imp采纳,获得10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751341
求助须知:如何正确求助?哪些是违规求助? 5467831
关于积分的说明 15369436
捐赠科研通 4890425
什么是DOI,文献DOI怎么找? 2629719
邀请新用户注册赠送积分活动 1577966
关于科研通互助平台的介绍 1534134