Leaf Area Index Retrieval for Broadleaf Trees by Envelope Fitting Method Using Terrestrial Laser Scanning Data

叶面积指数 遥感 天蓬 稳健性(进化) 点云 反演(地质) 激光扫描 均方误差 数学 计算机科学 算法 人工智能 光学 激光器 统计 物理 植物 地质学 古生物学 生物化学 化学 构造盆地 生物 基因
作者
Hangkai You,Shihua Li,Lixia Ma,Di Wang
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:4
标识
DOI:10.1109/lgrs.2022.3214427
摘要

Most conventional Leaf Area Index (LAI) retrieval methods using Terrestrial Laser Scanning (TLS) data are based on Beer’s law and are severely affected by the effects of leaf occlusion and aggregation. Moreover, the correction of LAI using the Clumping Index (CI) relies on assumptions and is generally not robust. This paper exploits the high spatial resolution and penetration capability of TLS to explore the physical meaning of point cloud data sampling and then model the leaf cluster envelope by the Alpha-shape algorithm. Subsequently, canopy LAI is obtained by counting the surface area of the envelope of each leaf cluster within the canopy and combining it with the projected area of the canopy. The entire process is physically based and introduces a new LAI inversion approach based on TLS. We tested the approach by simulating the TLS data of 25 synthetic trees with different leaf areas and morphologies to evaluate its robustness. Four strategies were adopted for parameter selection in the envelope modeling step to automate the process of finding the optimal envelope radius and improve the inversion accuracy of LAI. In comparison with the traditional LAI retrieval method based on Beer’s law (RMSE% is 47.3%), we found that the method proposed in this letter has a higher inversion accuracy with a minimum RMSE% of 27.7%. Our method also is significantly more robust for high LAI scenes and performs well in scenes with high occlusion and aggregation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小余同学完成签到,获得积分10
刚刚
长安完成签到,获得积分10
刚刚
英姑应助重要的春天采纳,获得10
刚刚
贪玩的德地完成签到,获得积分10
刚刚
刚刚
SYLH应助labxgr采纳,获得10
1秒前
Hello应助勤奋的烨霖采纳,获得10
1秒前
感动的皮卡丘完成签到,获得积分10
1秒前
2秒前
Loki完成签到,获得积分10
3秒前
4秒前
龙卷完成签到,获得积分10
7秒前
7秒前
8秒前
河马完成签到,获得积分10
10秒前
单身的钧完成签到,获得积分10
10秒前
11秒前
拉拉霍霍完成签到,获得积分10
11秒前
爱科学完成签到 ,获得积分10
11秒前
Owen应助缥缈八宝粥采纳,获得10
11秒前
称心语风完成签到,获得积分10
12秒前
lin应助十二采纳,获得10
12秒前
12秒前
smoli完成签到 ,获得积分10
12秒前
罗小甜发布了新的文献求助10
12秒前
ayuelei发布了新的文献求助10
12秒前
albert Tesla完成签到,获得积分10
13秒前
13秒前
路途遥远完成签到,获得积分10
13秒前
14秒前
小李发布了新的文献求助10
15秒前
隐形曼青应助DXXX采纳,获得10
15秒前
15秒前
15秒前
16秒前
无花果应助xxxxfiona采纳,获得10
17秒前
在水一方应助IanYoung71采纳,获得10
17秒前
失眠迎松发布了新的文献求助30
17秒前
17秒前
啦啦啦完成签到,获得积分20
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969458
求助须知:如何正确求助?哪些是违规求助? 3514286
关于积分的说明 11173363
捐赠科研通 3249652
什么是DOI,文献DOI怎么找? 1794948
邀请新用户注册赠送积分活动 875501
科研通“疑难数据库(出版商)”最低求助积分说明 804836