Automatic Landmark Identification on IntraOralScans

地标 计算机科学 人工智能 计算机视觉 鉴定(生物学) 模式识别(心理学) 植物 生物
作者
Baptiste Baquero,Maxime Gillot,Lucía Cevidanes,Najla Al Turkestani,Marcela Gurgel,Mathieu Leclercq,Jonas Bianchi,Marília Yatabe,Antônio Carlos de Oliveira Ruellas,Camila Massaro,Aron Aliaga,Maria Antonia Alvarez Castrillon,Diego Rey,Juan Fernando Aristizábal,Juan Carlos Prieto
出处
期刊:Lecture Notes in Computer Science 卷期号:: 32-42 被引量:1
标识
DOI:10.1007/978-3-031-23179-7_4
摘要

With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 ± 0.28 mm and 0.45 ± 0.28 mm for respectively lower and upper occlusal landmarks, and 0.62 ± 0.28 mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5 mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助demonox采纳,获得10
刚刚
1秒前
1秒前
跳不起来的大神完成签到 ,获得积分10
2秒前
tq发布了新的文献求助10
2秒前
HHHHHH完成签到 ,获得积分20
2秒前
我是老大应助tiam采纳,获得10
2秒前
隐形曼青应助溯流光采纳,获得10
3秒前
3秒前
5秒前
5秒前
6秒前
西瓜橙子完成签到,获得积分10
6秒前
科研通AI2S应助张北北采纳,获得10
6秒前
NIUB完成签到,获得积分10
7秒前
Keeper完成签到,获得积分10
7秒前
朝暮应助hhh采纳,获得10
8秒前
Akim应助Ing采纳,获得10
8秒前
小二郎应助柒柒采纳,获得10
8秒前
clyde凌丫完成签到,获得积分10
9秒前
PANGtouyu完成签到,获得积分10
9秒前
爆米花应助少年锦时asd采纳,获得10
9秒前
小神仙完成签到,获得积分10
9秒前
还没想好完成签到,获得积分10
10秒前
无梦为安发布了新的文献求助10
10秒前
朝天完成签到,获得积分10
10秒前
无限草丛发布了新的文献求助10
12秒前
12秒前
复杂的金针菇完成签到,获得积分10
12秒前
tiam完成签到,获得积分10
13秒前
13秒前
13秒前
LYSM应助月影碎星河采纳,获得10
13秒前
13秒前
14秒前
14秒前
milkcoffe完成签到,获得积分10
15秒前
caowen发布了新的文献求助10
15秒前
mmyhn应助aoteman采纳,获得20
15秒前
善学以致用应助巴爪鱼采纳,获得10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974856
求助须知:如何正确求助?哪些是违规求助? 3519400
关于积分的说明 11198085
捐赠科研通 3255563
什么是DOI,文献DOI怎么找? 1797860
邀请新用户注册赠送积分活动 877208
科研通“疑难数据库(出版商)”最低求助积分说明 806219