已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Landmark Identification on IntraOralScans

地标 计算机科学 人工智能 计算机视觉 鉴定(生物学) 模式识别(心理学) 植物 生物
作者
Baptiste Baquero,Maxime Gillot,Lucía Cevidanes,Najla Al Turkestani,Marcela Gurgel,Mathieu Leclercq,Jonas Bianchi,Marília Yatabe,Antônio Carlos de Oliveira Ruellas,Camila Massaro,Aron Aliaga,Maria Antonia Alvarez Castrillon,Diego Rey,Juan Fernando Aristizábal,Juan Carlos Prieto
出处
期刊:Lecture Notes in Computer Science 卷期号:: 32-42 被引量:1
标识
DOI:10.1007/978-3-031-23179-7_4
摘要

With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 ± 0.28 mm and 0.45 ± 0.28 mm for respectively lower and upper occlusal landmarks, and 0.62 ± 0.28 mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5 mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zshjwk18完成签到,获得积分10
4秒前
mit完成签到,获得积分10
5秒前
8秒前
8秒前
10秒前
JamesPei应助类类采纳,获得10
11秒前
12秒前
ZD发布了新的文献求助10
12秒前
xianjingli发布了新的文献求助10
16秒前
sss发布了新的文献求助10
17秒前
乐观的凌兰完成签到 ,获得积分10
19秒前
小巧的雅旋完成签到,获得积分10
21秒前
Jasper应助yry采纳,获得150
22秒前
AamirAli完成签到,获得积分10
23秒前
QUU完成签到 ,获得积分10
23秒前
研友_xnEOX8完成签到,获得积分10
25秒前
类类完成签到,获得积分10
25秒前
26秒前
26秒前
27秒前
我是老大应助自由山槐采纳,获得10
29秒前
centlay发布了新的文献求助10
31秒前
32秒前
liangmh发布了新的文献求助10
33秒前
yybaby发布了新的文献求助10
34秒前
35秒前
37秒前
泥娃娃完成签到,获得积分10
39秒前
41秒前
41秒前
43秒前
44秒前
ddrose发布了新的文献求助10
46秒前
上官若男应助从云采纳,获得10
52秒前
53秒前
55秒前
xiaoshuwang完成签到,获得积分10
56秒前
56秒前
自由山槐发布了新的文献求助10
57秒前
开朗初蓝完成签到,获得积分20
58秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303063
求助须知:如何正确求助?哪些是违规求助? 2937359
关于积分的说明 8481749
捐赠科研通 2611192
什么是DOI,文献DOI怎么找? 1425773
科研通“疑难数据库(出版商)”最低求助积分说明 662434
邀请新用户注册赠送积分活动 646861