Automatic Landmark Identification on IntraOralScans

地标 计算机科学 人工智能 计算机视觉 鉴定(生物学) 模式识别(心理学) 植物 生物
作者
Baptiste Baquero,Maxime Gillot,Lucía Cevidanes,Najla Al Turkestani,Marcela Gurgel,Mathieu Leclercq,Jonas Bianchi,Marília Yatabe,Antônio Carlos de Oliveira Ruellas,Camila Massaro,Aron Aliaga,Maria Antonia Alvarez Castrillon,Diego Rey,Juan Fernando Aristizábal,Juan Carlos Prieto
出处
期刊:Lecture Notes in Computer Science 卷期号:: 32-42 被引量:1
标识
DOI:10.1007/978-3-031-23179-7_4
摘要

With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 ± 0.28 mm and 0.45 ± 0.28 mm for respectively lower and upper occlusal landmarks, and 0.62 ± 0.28 mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5 mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenchen发布了新的文献求助10
1秒前
1秒前
孔嘉宁关注了科研通微信公众号
2秒前
斯文败类应助热情的果汁采纳,获得30
3秒前
卷卷完成签到,获得积分10
3秒前
DI完成签到,获得积分10
3秒前
3秒前
小二郎应助飞天意面采纳,获得10
3秒前
wu发布了新的文献求助10
4秒前
忧郁含海完成签到,获得积分10
4秒前
mm发布了新的文献求助10
4秒前
Michael发布了新的文献求助10
5秒前
郭菱香完成签到 ,获得积分10
5秒前
bkagyin应助zjl900111采纳,获得10
6秒前
从容的小虾米完成签到,获得积分10
6秒前
希望天下0贩的0应助chun采纳,获得10
6秒前
聪慧小霜应助清秀送终采纳,获得10
6秒前
7秒前
7秒前
Vicki完成签到,获得积分10
7秒前
wxs完成签到,获得积分10
8秒前
leezhen完成签到,获得积分10
8秒前
上官若男应助Michael采纳,获得10
8秒前
喵喵发布了新的文献求助10
8秒前
Blue完成签到,获得积分10
8秒前
bpg28发布了新的文献求助10
9秒前
eeo完成签到,获得积分10
9秒前
Orange应助沟通亿心采纳,获得10
9秒前
阿猫发布了新的文献求助10
10秒前
10秒前
10秒前
wxs发布了新的文献求助10
11秒前
11秒前
CodeCraft应助铁柱采纳,获得10
11秒前
博士后完成签到,获得积分10
11秒前
正能量发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
小逗逗n号发布了新的文献求助10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970287
求助须知:如何正确求助?哪些是违规求助? 3515034
关于积分的说明 11176923
捐赠科研通 3250301
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875732
科研通“疑难数据库(出版商)”最低求助积分说明 805039