Automatic Landmark Identification on IntraOralScans

地标 计算机科学 人工智能 计算机视觉 鉴定(生物学) 模式识别(心理学) 植物 生物
作者
Baptiste Baquero,Maxime Gillot,Lucía Cevidanes,Najla Al Turkestani,Marcela Gurgel,Mathieu Leclercq,Jonas Bianchi,Marília Yatabe,Antônio Carlos de Oliveira Ruellas,Camila Massaro,Aron Aliaga,Maria Antonia Alvarez Castrillon,Diego Rey,Juan Fernando Aristizábal,Juan Carlos Prieto
出处
期刊:Lecture Notes in Computer Science 卷期号:: 32-42 被引量:1
标识
DOI:10.1007/978-3-031-23179-7_4
摘要

With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 ± 0.28 mm and 0.45 ± 0.28 mm for respectively lower and upper occlusal landmarks, and 0.62 ± 0.28 mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5 mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霭祢完成签到 ,获得积分10
刚刚
城北徐公完成签到,获得积分20
1秒前
111完成签到,获得积分20
1秒前
独特笙完成签到,获得积分10
2秒前
2秒前
3秒前
gyh完成签到,获得积分20
3秒前
科目三应助孤独的柠檬采纳,获得10
3秒前
LZC完成签到,获得积分10
3秒前
ayuelei发布了新的文献求助10
4秒前
找不找得到完成签到,获得积分10
4秒前
花南星完成签到,获得积分10
4秒前
lllllkkkj完成签到,获得积分10
4秒前
qiong253完成签到 ,获得积分10
4秒前
5秒前
独特笙发布了新的文献求助10
5秒前
6秒前
重要的奇异果完成签到,获得积分10
6秒前
Halo完成签到,获得积分10
7秒前
8秒前
JaneChen发布了新的文献求助10
8秒前
zhu完成签到,获得积分10
10秒前
机智猴完成签到,获得积分10
11秒前
隐形曼青应助ayuelei采纳,获得10
12秒前
小短腿完成签到,获得积分20
12秒前
小二郎应助lili采纳,获得10
16秒前
Kiutaka完成签到,获得积分10
18秒前
华仔应助Longbin李采纳,获得10
18秒前
陶醉的哈哈哈哈完成签到 ,获得积分10
18秒前
19秒前
大个应助yuan采纳,获得10
19秒前
星辰大海应助细致的武人采纳,获得10
19秒前
阿强完成签到,获得积分10
20秒前
momomi完成签到,获得积分10
21秒前
wuhao0118发布了新的文献求助10
22秒前
23秒前
23秒前
ypeng完成签到,获得积分10
24秒前
在水一方应助优雅的白萱采纳,获得10
24秒前
桐桐应助yryzst9899采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4546792
求助须知:如何正确求助?哪些是违规求助? 3977943
关于积分的说明 12317707
捐赠科研通 3646410
什么是DOI,文献DOI怎么找? 2008137
邀请新用户注册赠送积分活动 1043717
科研通“疑难数据库(出版商)”最低求助积分说明 932388