Automatic Landmark Identification on IntraOralScans

地标 计算机科学 人工智能 计算机视觉 鉴定(生物学) 模式识别(心理学) 植物 生物
作者
Baptiste Baquero,Maxime Gillot,Lucía Cevidanes,Najla Al Turkestani,Marcela Gurgel,Mathieu Leclercq,Jonas Bianchi,Marília Yatabe,Antônio Carlos de Oliveira Ruellas,Camila Massaro,Aron Aliaga,Maria Antonia Alvarez Castrillon,Diego Rey,Juan Fernando Aristizábal,Juan Carlos Prieto
出处
期刊:Lecture Notes in Computer Science 卷期号:: 32-42 被引量:1
标识
DOI:10.1007/978-3-031-23179-7_4
摘要

With the advent of 3D printing and additive manufacturing of dental devices, IntraOral scanners (IOS) have gained wide adoption in dental practices and allowed for efficient workflows in clinical settings. Accurate automatic identification of dental landmarks in IOS is required to aid dental researchers and clinicians to plan and assess tooth position for crown restorations, orthodontics movements, and/or implant dentistry. In this paper, we present a new algorithm for Automatic Landmark Identification on IntraOralScans (ALIIOS), that combines image processing, image segmentation, and machine learning approaches to automatically and accurately identify commonly used landmarks on IOSs. Four hundred and five digital dental models were pre-processed by 3 clinician experts to manually annotate 5 landmarks on each dental crown in the upper and lower arches. Our approach uses the PyTorch3D rendering engine to capture 2D views of the dental arches from different viewpoints as well as the target 3D patches at the location of the landmarks. The ALIIOS algorithm synthesizes these 3D patches with a U-Net and allows accurate placement of the landmarks on the surface of each dental crown. Our results, after cross-validation, show an average distance error between the prediction and the clinicians' landmarks of 0.43 ± 0.28 mm and 0.45 ± 0.28 mm for respectively lower and upper occlusal landmarks, and 0.62 ± 0.28 mm for lower and upper cervical landmarks. There was on average a 5% error of landmarks more than 1.5 mm away from the clinicians' landmarks, due to errors in landmark nomenclature or improper segmentation. In conclusion, we present and validate a novel algorithm for accurate automated landmark identification on intraoral scans to increase efficiency and facilitate quantitative assessments in clinical practice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵饼干发布了新的文献求助30
刚刚
852应助luoyy9487采纳,获得10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
魏煜佳完成签到,获得积分10
5秒前
6秒前
Lynne发布了新的文献求助10
8秒前
sally发布了新的文献求助10
9秒前
baihehuakai发布了新的文献求助30
10秒前
11秒前
酷波er应助鱿鱼苦瓜汤采纳,获得10
11秒前
12秒前
13秒前
13秒前
14秒前
lian发布了新的文献求助10
17秒前
不想看文献完成签到 ,获得积分10
18秒前
刘哔发布了新的文献求助10
18秒前
善学以致用应助Lynne采纳,获得10
19秒前
收醉人发布了新的文献求助10
20秒前
11发布了新的文献求助10
20秒前
顷梦完成签到,获得积分10
21秒前
量子星尘发布了新的文献求助10
22秒前
22秒前
djbj2022发布了新的文献求助10
25秒前
WN发布了新的文献求助10
25秒前
messyknots完成签到,获得积分10
26秒前
刘哔完成签到,获得积分10
26秒前
26秒前
烂漫忆山关注了科研通微信公众号
26秒前
熊猫完成签到 ,获得积分10
27秒前
深情安青应助王小红采纳,获得10
27秒前
pluto应助文文采纳,获得10
27秒前
shiqiang mu应助11采纳,获得10
30秒前
斯文败类应助11采纳,获得10
30秒前
30秒前
30秒前
lanlan完成签到 ,获得积分10
31秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425233
求助须知:如何正确求助?哪些是违规求助? 4539321
关于积分的说明 14166837
捐赠科研通 4456547
什么是DOI,文献DOI怎么找? 2444245
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412581