Fatigue damage mechanisms and critical current degradation in REBCO tapes at cryogenic temperature

材料科学 降级(电信) 低温 临界电流 电流(流体) 复合材料 超导电性 计算机科学 凝聚态物理 电信 物理 工程类 电气工程
作者
P. Zhang,Jiaming Zhang,Xingzhe Wang,Mingzhi Guan
出处
期刊:Superconductor Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6668/adca5c
摘要

Abstract Rare-earth barium copper oxide (REBCO) coated conductor (CC) tapes are extensively utilized in applications subjected to cyclical electromagnetic loads, which can lead to significant degradation of the critical current () due to damage within the superconducting layer. Although previous research has investigated the degradation mechanisms and critical current levels in REBCO CC tapes under mechanical deformation, the mechanical failure behavior under cyclic fatigue loading and its impact on remain insufficiently explored. This study addresses this gap by developing a comprehensive fatigue damage model for REBCO CC tapes, focusing on the mechanisms governing their transport properties under repeated loading cycles and varying stress amplitudes. We propose an improved nonlinear fatigue damage accumulation model to predict the fatigue lifetime and damage progression. Additionally, a phenomenological model incorporating the Weibull distribution is introduced to evaluate degradation. Material parameters for the models were determined from experimental data, and critical current tests were performed at liquid nitrogen temperature following cyclic loading. The results demonstrate that the proposed damage model exhibits pronounced nonlinear behavior, characterized by three distinct stages of damage evolution. Extensive cyclic loading experiments validated the model’s reliability and precision. This non-invasive analytical framework provides a robust methodology for quantifying and predicting degradation in REBCO CC tapes under cyclic stress or strain conditions. The findings advance the understanding of fatigue-induced degradation and offer a predictive tool for assessing the performance of REBCO CC tapes in practical applications, contributing to the optimization of their operational lifespan and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助kuankuan采纳,获得10
刚刚
友好的千柳关注了科研通微信公众号
刚刚
1秒前
1秒前
白白关注了科研通微信公众号
1秒前
badada发布了新的文献求助10
2秒前
刘家成发布了新的文献求助10
3秒前
Beauty完成签到 ,获得积分10
4秒前
5秒前
ycs完成签到 ,获得积分10
6秒前
quan发布了新的文献求助10
6秒前
刘家成完成签到,获得积分20
6秒前
7秒前
明天儿发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
11秒前
Hui发布了新的文献求助10
11秒前
12秒前
kuankuan发布了新的文献求助10
12秒前
一罐樱桃酱完成签到,获得积分10
12秒前
1234发布了新的文献求助10
12秒前
安渝完成签到 ,获得积分10
13秒前
清水胖子发布了新的文献求助10
13秒前
fengw420完成签到,获得积分10
14秒前
乐乐应助刘家成采纳,获得10
14秒前
14秒前
fd163c应助刘阿呆采纳,获得10
15秒前
句小点发布了新的文献求助30
15秒前
alixyue发布了新的文献求助10
15秒前
大模型应助小小鱼采纳,获得10
15秒前
生动映波发布了新的文献求助10
16秒前
宋帮琦关注了科研通微信公众号
16秒前
大模型应助jiajia采纳,获得10
18秒前
长安完成签到,获得积分10
19秒前
20秒前
小小完成签到,获得积分10
20秒前
21秒前
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755384
求助须知:如何正确求助?哪些是违规求助? 3298445
关于积分的说明 10105664
捐赠科研通 3013093
什么是DOI,文献DOI怎么找? 1654979
邀请新用户注册赠送积分活动 789331
科研通“疑难数据库(出版商)”最低求助积分说明 753273