A Generative Artificial Intelligence (AI)-Based Human-Computer Collaborative Programming Learning Method to Improve Computational Thinking, Learning Attitudes, and Learning Achievement

计算机科学 人工智能 生成语法 计算思维 教育技术 机器学习 主动学习(机器学习) 数学教育 心理学
作者
Gang Zhao,Lijun Yang,Biling Hu,Jing Wang
出处
期刊:Journal of Educational Computing Research [SAGE Publishing]
标识
DOI:10.1177/07356331251336154
摘要

Human-computer collaboration is an effective way to learn programming courses. However, most existing human-computer collaborative programming learning is supported by traditional computers with a relatively low level of personalized interaction, which greatly limits the efficiency of students’ efficiency of programming learning and development of computational thinking. To address the above issues, this study introduces generative AI into human-computer collaborative programming learning and proposes a dialogue-negotiated human-computer collaborative programming learning method based on generative AI. The method focuses on the problems-solving process and constructs multiple agents through Prompt design, which enable students to improve their computational thinking and master programming skills in the process of human-computer interaction for problem-solving. Finally, a quasi-experiment was conducted to verify the effectiveness of the proposed method in a 10th grade computer programming course in a high school. 43 students in the experimental group learned with the proposed method, while 42 students in the control group adopted the traditional computer-supported human-computer collaborative programming learning method. The experimental results showed that the proposed method more significantly improved students’ computational thinking, programming learning attitudes, and learning achievement. This study provides theoretical foundations and application reference for future generative AI-assisted human-computer collaborative teaching.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
由天与完成签到,获得积分10
刚刚
zmh完成签到,获得积分10
刚刚
1秒前
lala发布了新的文献求助10
1秒前
明理青枫关注了科研通微信公众号
1秒前
georgett完成签到,获得积分20
2秒前
2秒前
橘子味的风完成签到,获得积分10
2秒前
fagfagsf发布了新的文献求助10
3秒前
鲁班7号完成签到,获得积分10
3秒前
小二郎应助小席采纳,获得10
3秒前
李健应助嬛嬛采纳,获得10
3秒前
4秒前
zhangxr发布了新的文献求助10
4秒前
周新运发布了新的文献求助10
4秒前
图治完成签到,获得积分10
4秒前
5秒前
不安的伯云完成签到,获得积分10
5秒前
宋十一发布了新的文献求助10
6秒前
HonamC发布了新的文献求助10
6秒前
充电宝应助称心仇血采纳,获得10
6秒前
7秒前
7秒前
水何澹澹完成签到,获得积分0
7秒前
鲁班7号发布了新的文献求助10
7秒前
8秒前
快乐吗猪完成签到 ,获得积分10
8秒前
9秒前
AI算法攻城狮完成签到 ,获得积分10
10秒前
CodeCraft应助wst采纳,获得10
10秒前
沉静的小熊猫完成签到,获得积分10
10秒前
zhangxr完成签到,获得积分10
10秒前
科研通AI5应助zjh采纳,获得10
11秒前
英俊的铭应助斯文墨镜采纳,获得10
11秒前
周新运完成签到,获得积分10
11秒前
小席完成签到,获得积分10
11秒前
11秒前
楼梯口无头女孩完成签到,获得积分10
11秒前
12秒前
顾矜应助热心市民小红花采纳,获得10
12秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748456
求助须知:如何正确求助?哪些是违规求助? 3291468
关于积分的说明 10073184
捐赠科研通 3007264
什么是DOI,文献DOI怎么找? 1651526
邀请新用户注册赠送积分活动 786444
科研通“疑难数据库(出版商)”最低求助积分说明 751742