A Deep-learning Based LSTM Approach for Multiphase Rate Transient Analysis in Tight and Ultratight Reservoir

瞬态(计算机编程) 瞬态分析 深度学习 人工智能 计算机科学 石油工程 地质学 工程类 瞬态响应 电气工程 操作系统
作者
Zhenhua Rui,Qiang Zhang,Fengyuan Zhang,Qiang Xia,Ruihan Lu,Weiwei Cao,Shuai Meng
标识
DOI:10.1115/1.4068137
摘要

Abstract During the production and operations of hydraulically fractured wells, large amounts of data are collected through numerous sensors or flowmeters, which can provide valuable understanding on the formation and hydraulic fractures. Although much studies try to use physical-justification based approaches to analyze these well history data, the analysis accuracy is significantly limited due to many assumptions made in physical models. This paper developed a LSTM-based deep learning for rate transient analysis in tight and ultratight (shale) reservoir and proposed a workflow to quantitatively evaluate fracture parameters. The proxy model is based on deep-learning algorithm of LSTM and is combined with a semi-analytical (base) model for multiphase water and hydrocarbon (oil or gas) flow in the hydraulically fractured reservoirs. To rigorously consider the multiphase flow mechanism in the semi-analytical model, LSTM and attention mechanism are introduced to forecast the key relationship of average saturation and pressure for semi-analytical model by training and predicting the time-dependent pressure and saturation series. We generated thousands of numerical simulation cases of wells in hydraulically fractured reservoirs, which provide production data and static reservoir data to train the deep-learning based proxy model. Model verification and comparison show that the proxy model can effectively predict pressure-dependent average saturation relationship with high accuracy. The numerical validation confirms the superiority of the proposed deep-learning based model than the semi-analytical model in accuracy with an error of less than 10% in estimating reservoir and fracture parameters and in calculation efficiency with the speed two orders of magnitude faster. The LSTM approach for rate transient analysis provides a more reliable method for evaluating reservoir performance, which can lead to improved production planning and resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高兴的丝发布了新的文献求助10
刚刚
1秒前
思源应助好久不见采纳,获得10
2秒前
3秒前
cy发布了新的文献求助10
4秒前
dianrenzhe完成签到,获得积分20
4秒前
5秒前
xiajiahao完成签到,获得积分20
5秒前
Xenia发布了新的文献求助30
5秒前
传奇3应助Mercy采纳,获得10
5秒前
6秒前
7秒前
琪琪发布了新的文献求助10
7秒前
wang完成签到,获得积分20
9秒前
orbitvox完成签到,获得积分10
9秒前
10秒前
谦让寄容完成签到 ,获得积分10
11秒前
共享精神应助最初采纳,获得10
11秒前
Owen应助自由的心情采纳,获得20
11秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
ricardo完成签到,获得积分10
15秒前
浮游应助bafang采纳,获得10
17秒前
然然然后发布了新的文献求助10
17秒前
解语花发布了新的文献求助10
17秒前
wdddr发布了新的文献求助10
18秒前
19秒前
wssamuel完成签到 ,获得积分10
20秒前
浮游应助Mercy采纳,获得10
21秒前
21秒前
21秒前
丁震完成签到,获得积分20
21秒前
我是老大应助xiajiahao采纳,获得10
22秒前
22秒前
Starry发布了新的文献求助10
24秒前
CodeCraft应助然然然后采纳,获得10
24秒前
24秒前
Lucas应助Fortitude采纳,获得10
25秒前
思源应助丁震采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4981977
求助须知:如何正确求助?哪些是违规求助? 4233837
关于积分的说明 13187551
捐赠科研通 4025466
什么是DOI,文献DOI怎么找? 2202250
邀请新用户注册赠送积分活动 1214585
关于科研通互助平台的介绍 1131014