A Deep-learning Based LSTM Approach for Multiphase Rate Transient Analysis in Tight and Ultratight Reservoir

瞬态(计算机编程) 瞬态分析 深度学习 人工智能 计算机科学 石油工程 地质学 工程类 瞬态响应 电气工程 操作系统
作者
Zhenhua Rui,Qiang Zhang,Fengyuan Zhang,Qiang Xia,Ruihan Lu,Weiwei Cao,Shuai Meng
标识
DOI:10.1115/1.4068137
摘要

Abstract During the production and operations of hydraulically fractured wells, large amounts of data are collected through numerous sensors or flowmeters, which can provide valuable understanding on the formation and hydraulic fractures. Although much studies try to use physical-justification based approaches to analyze these well history data, the analysis accuracy is significantly limited due to many assumptions made in physical models. This paper developed a LSTM-based deep learning for rate transient analysis in tight and ultratight (shale) reservoir and proposed a workflow to quantitatively evaluate fracture parameters. The proxy model is based on deep-learning algorithm of LSTM and is combined with a semi-analytical (base) model for multiphase water and hydrocarbon (oil or gas) flow in the hydraulically fractured reservoirs. To rigorously consider the multiphase flow mechanism in the semi-analytical model, LSTM and attention mechanism are introduced to forecast the key relationship of average saturation and pressure for semi-analytical model by training and predicting the time-dependent pressure and saturation series. We generated thousands of numerical simulation cases of wells in hydraulically fractured reservoirs, which provide production data and static reservoir data to train the deep-learning based proxy model. Model verification and comparison show that the proxy model can effectively predict pressure-dependent average saturation relationship with high accuracy. The numerical validation confirms the superiority of the proposed deep-learning based model than the semi-analytical model in accuracy with an error of less than 10% in estimating reservoir and fracture parameters and in calculation efficiency with the speed two orders of magnitude faster. The LSTM approach for rate transient analysis provides a more reliable method for evaluating reservoir performance, which can lead to improved production planning and resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Rondab应助查丽采纳,获得30
1秒前
2秒前
2秒前
gujianhua完成签到,获得积分10
3秒前
3秒前
烟花应助pipichang采纳,获得10
3秒前
李健应助武坤采纳,获得10
3秒前
4秒前
科研通AI2S应助懒熊采纳,获得10
5秒前
HHHAN发布了新的文献求助10
5秒前
6秒前
redking发布了新的文献求助10
6秒前
dovis完成签到,获得积分10
6秒前
7秒前
7秒前
MYZ完成签到,获得积分10
9秒前
王sir完成签到,获得积分10
9秒前
饼藏发布了新的文献求助10
10秒前
obaica发布了新的文献求助10
11秒前
11秒前
张牧之发布了新的文献求助10
11秒前
pcr163应助shinn采纳,获得50
11秒前
tsuki完成签到 ,获得积分10
12秒前
wihjnfnk完成签到,获得积分10
13秒前
13秒前
小蘑菇应助乙醇采纳,获得10
14秒前
liu完成签到,获得积分10
14秒前
六步郎完成签到,获得积分10
15秒前
15秒前
16秒前
悦悦发布了新的文献求助10
16秒前
16秒前
16秒前
武坤发布了新的文献求助10
17秒前
SciGPT应助坚定小熊猫采纳,获得10
17秒前
18秒前
19秒前
20秒前
小马甲应助康康采纳,获得10
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967544
求助须知:如何正确求助?哪些是违规求助? 3512763
关于积分的说明 11165008
捐赠科研通 3247759
什么是DOI,文献DOI怎么找? 1794027
邀请新用户注册赠送积分活动 874808
科研通“疑难数据库(出版商)”最低求助积分说明 804528