A Deep-learning Based LSTM Approach for Multiphase Rate Transient Analysis in Tight and Ultratight Reservoir

瞬态(计算机编程) 瞬态分析 深度学习 人工智能 计算机科学 石油工程 地质学 工程类 瞬态响应 电气工程 操作系统
作者
Zhenhua Rui,Qiang Zhang,Fengyuan Zhang,Qiang Xia,Ruihan Lu,Weiwei Cao,Shuai Meng
标识
DOI:10.1115/1.4068137
摘要

Abstract During the production and operations of hydraulically fractured wells, large amounts of data are collected through numerous sensors or flowmeters, which can provide valuable understanding on the formation and hydraulic fractures. Although much studies try to use physical-justification based approaches to analyze these well history data, the analysis accuracy is significantly limited due to many assumptions made in physical models. This paper developed a LSTM-based deep learning for rate transient analysis in tight and ultratight (shale) reservoir and proposed a workflow to quantitatively evaluate fracture parameters. The proxy model is based on deep-learning algorithm of LSTM and is combined with a semi-analytical (base) model for multiphase water and hydrocarbon (oil or gas) flow in the hydraulically fractured reservoirs. To rigorously consider the multiphase flow mechanism in the semi-analytical model, LSTM and attention mechanism are introduced to forecast the key relationship of average saturation and pressure for semi-analytical model by training and predicting the time-dependent pressure and saturation series. We generated thousands of numerical simulation cases of wells in hydraulically fractured reservoirs, which provide production data and static reservoir data to train the deep-learning based proxy model. Model verification and comparison show that the proxy model can effectively predict pressure-dependent average saturation relationship with high accuracy. The numerical validation confirms the superiority of the proposed deep-learning based model than the semi-analytical model in accuracy with an error of less than 10% in estimating reservoir and fracture parameters and in calculation efficiency with the speed two orders of magnitude faster. The LSTM approach for rate transient analysis provides a more reliable method for evaluating reservoir performance, which can lead to improved production planning and resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理问柳发布了新的文献求助10
刚刚
ky应助xiaoX12138采纳,获得10
1秒前
明理问柳完成签到,获得积分10
7秒前
坚强的嚣完成签到 ,获得积分10
7秒前
量子星尘发布了新的文献求助10
9秒前
gxzsdf完成签到 ,获得积分10
12秒前
我思故我在完成签到,获得积分10
14秒前
15秒前
阿帕奇完成签到 ,获得积分10
18秒前
Conner完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助10
22秒前
zhang完成签到 ,获得积分10
23秒前
wol007完成签到 ,获得积分10
25秒前
123完成签到 ,获得积分10
26秒前
Justtry完成签到 ,获得积分20
26秒前
naiyouqiu1989完成签到,获得积分10
28秒前
沿途有你完成签到 ,获得积分10
28秒前
花生四烯酸完成签到 ,获得积分10
30秒前
科科通通完成签到,获得积分10
30秒前
WYK完成签到 ,获得积分10
33秒前
33秒前
学海行舟完成签到 ,获得积分10
37秒前
黑眼圈完成签到 ,获得积分10
40秒前
幸福的羿完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
霍明轩完成签到 ,获得积分10
51秒前
游艺完成签到 ,获得积分10
54秒前
量子星尘发布了新的文献求助10
55秒前
是盐的学术号吖完成签到 ,获得积分10
56秒前
空2完成签到 ,获得积分0
1分钟前
烂漫的从彤完成签到,获得积分10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
小心翼翼完成签到 ,获得积分10
1分钟前
Manzia完成签到,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
1分钟前
在水一方应助灵巧的傲柏采纳,获得10
1分钟前
Dr.Tang完成签到 ,获得积分10
1分钟前
swordshine完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613016
求助须知:如何正确求助?哪些是违规求助? 4018011
关于积分的说明 12436990
捐赠科研通 3700338
什么是DOI,文献DOI怎么找? 2040716
邀请新用户注册赠送积分活动 1073470
科研通“疑难数据库(出版商)”最低求助积分说明 957104