A Deep-learning Based LSTM Approach for Multiphase Rate Transient Analysis in Tight and Ultratight Reservoir

瞬态(计算机编程) 瞬态分析 深度学习 人工智能 计算机科学 石油工程 地质学 工程类 瞬态响应 电气工程 操作系统
作者
Zhenhua Rui,Qiang Zhang,Fengyuan Zhang,Qiang Xia,Ruihan Lu,Weiwei Cao,Shuai Meng
标识
DOI:10.1115/1.4068137
摘要

Abstract During the production and operations of hydraulically fractured wells, large amounts of data are collected through numerous sensors or flowmeters, which can provide valuable understanding on the formation and hydraulic fractures. Although much studies try to use physical-justification based approaches to analyze these well history data, the analysis accuracy is significantly limited due to many assumptions made in physical models. This paper developed a LSTM-based deep learning for rate transient analysis in tight and ultratight (shale) reservoir and proposed a workflow to quantitatively evaluate fracture parameters. The proxy model is based on deep-learning algorithm of LSTM and is combined with a semi-analytical (base) model for multiphase water and hydrocarbon (oil or gas) flow in the hydraulically fractured reservoirs. To rigorously consider the multiphase flow mechanism in the semi-analytical model, LSTM and attention mechanism are introduced to forecast the key relationship of average saturation and pressure for semi-analytical model by training and predicting the time-dependent pressure and saturation series. We generated thousands of numerical simulation cases of wells in hydraulically fractured reservoirs, which provide production data and static reservoir data to train the deep-learning based proxy model. Model verification and comparison show that the proxy model can effectively predict pressure-dependent average saturation relationship with high accuracy. The numerical validation confirms the superiority of the proposed deep-learning based model than the semi-analytical model in accuracy with an error of less than 10% in estimating reservoir and fracture parameters and in calculation efficiency with the speed two orders of magnitude faster. The LSTM approach for rate transient analysis provides a more reliable method for evaluating reservoir performance, which can lead to improved production planning and resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15503116087发布了新的文献求助10
刚刚
大个应助初之采纳,获得10
1秒前
te发布了新的文献求助10
1秒前
边港洋完成签到,获得积分10
3秒前
3秒前
凤羽发布了新的文献求助10
4秒前
灵巧听露发布了新的文献求助10
4秒前
可爱的函函应助猫猫无敌采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
爆米花应助刁弘睿采纳,获得10
8秒前
8秒前
8秒前
缥缈海云完成签到,获得积分10
8秒前
9秒前
斯文败类应助沙场秋点兵采纳,获得10
10秒前
123完成签到,获得积分10
10秒前
11秒前
无辜问玉发布了新的文献求助10
11秒前
11秒前
12秒前
谨慎乐安发布了新的文献求助10
12秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
缥缈海云发布了新的文献求助10
15秒前
mylaodao发布了新的文献求助10
15秒前
16秒前
chen完成签到,获得积分10
17秒前
拾贰月发布了新的文献求助10
17秒前
俊杰完成签到,获得积分10
18秒前
阿菜完成签到,获得积分10
18秒前
wanghao完成签到,获得积分20
18秒前
善学以致用应助songjiatian采纳,获得10
19秒前
20秒前
20秒前
善学以致用应助追忆淮采纳,获得10
21秒前
Hello应助靓丽凝海采纳,获得10
21秒前
21秒前
毛笑冉完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718021
求助须知:如何正确求助?哪些是违规求助? 5250051
关于积分的说明 15284272
捐赠科研通 4868198
什么是DOI,文献DOI怎么找? 2614063
邀请新用户注册赠送积分活动 1563973
关于科研通互助平台的介绍 1521425