亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep-learning Based LSTM Approach for Multiphase Rate Transient Analysis in Tight and Ultratight Reservoir

瞬态(计算机编程) 瞬态分析 深度学习 人工智能 计算机科学 石油工程 地质学 工程类 瞬态响应 电气工程 操作系统
作者
Zhenhua Rui,Qiang Zhang,Fengyuan Zhang,Qiang Xia,Ruihan Lu,Weiwei Cao,Shuai Meng
标识
DOI:10.1115/1.4068137
摘要

Abstract During the production and operations of hydraulically fractured wells, large amounts of data are collected through numerous sensors or flowmeters, which can provide valuable understanding on the formation and hydraulic fractures. Although much studies try to use physical-justification based approaches to analyze these well history data, the analysis accuracy is significantly limited due to many assumptions made in physical models. This paper developed a LSTM-based deep learning for rate transient analysis in tight and ultratight (shale) reservoir and proposed a workflow to quantitatively evaluate fracture parameters. The proxy model is based on deep-learning algorithm of LSTM and is combined with a semi-analytical (base) model for multiphase water and hydrocarbon (oil or gas) flow in the hydraulically fractured reservoirs. To rigorously consider the multiphase flow mechanism in the semi-analytical model, LSTM and attention mechanism are introduced to forecast the key relationship of average saturation and pressure for semi-analytical model by training and predicting the time-dependent pressure and saturation series. We generated thousands of numerical simulation cases of wells in hydraulically fractured reservoirs, which provide production data and static reservoir data to train the deep-learning based proxy model. Model verification and comparison show that the proxy model can effectively predict pressure-dependent average saturation relationship with high accuracy. The numerical validation confirms the superiority of the proposed deep-learning based model than the semi-analytical model in accuracy with an error of less than 10% in estimating reservoir and fracture parameters and in calculation efficiency with the speed two orders of magnitude faster. The LSTM approach for rate transient analysis provides a more reliable method for evaluating reservoir performance, which can lead to improved production planning and resource allocation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
DrLee完成签到,获得积分10
6秒前
冷傲的帽子完成签到 ,获得积分10
22秒前
24秒前
29秒前
Persist6578完成签到 ,获得积分10
29秒前
Magali应助小吴同志采纳,获得30
30秒前
33秒前
高高的罡完成签到,获得积分10
33秒前
43秒前
Persist完成签到 ,获得积分10
46秒前
49秒前
打地鼠工人完成签到,获得积分10
51秒前
爱听歌蜗牛完成签到,获得积分10
53秒前
53秒前
顾矜应助向南采纳,获得10
54秒前
在水一方应助爱听歌蜗牛采纳,获得10
57秒前
LT发布了新的文献求助10
58秒前
1分钟前
舒心豪英完成签到 ,获得积分10
1分钟前
1分钟前
会撒娇的蓝天完成签到 ,获得积分10
1分钟前
快乐友灵完成签到,获得积分10
1分钟前
热塑性哈士奇完成签到,获得积分10
1分钟前
向南完成签到,获得积分10
1分钟前
LT完成签到,获得积分10
1分钟前
1分钟前
kanoz完成签到 ,获得积分10
1分钟前
战神林北完成签到,获得积分10
1分钟前
1分钟前
zmx完成签到 ,获得积分10
1分钟前
溧子呀发布了新的文献求助10
1分钟前
尘弦完成签到 ,获得积分10
1分钟前
杰杰小杰发布了新的文献求助30
1分钟前
搜集达人应助溧子呀采纳,获得10
1分钟前
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
jyy应助科研通管家采纳,获得10
1分钟前
爱静静应助科研通管家采纳,获得10
1分钟前
烟花应助成就若颜采纳,获得10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3595925
求助须知:如何正确求助?哪些是违规求助? 3162865
关于积分的说明 9542542
捐赠科研通 2866598
什么是DOI,文献DOI怎么找? 1575534
邀请新用户注册赠送积分活动 740242
科研通“疑难数据库(出版商)”最低求助积分说明 724059