亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiscale Joint Recurrence Quantification Analysis Integrating ECG Spatiotemporal and Dynamic Information for Cardiopathy Detection

接头(建筑物) 计算机科学 递归量化分析 人工智能 数据挖掘 模式识别(心理学) 工程类 非线性系统 物理 建筑工程 量子力学
作者
Qinghua Sun,J. Y. Li,Chunmiao Liang,Rugang Liu,Jiaojiao Pang,Yuguo Chen,Cong Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-13 被引量:2
标识
DOI:10.1109/tim.2024.3368424
摘要

Cardiovascular disease disturbs the structure and function of myocardial cells, altering the spatiotemporal and dynamic patterns of cardiac electrical activity. The conventional joint recurrence analysis contributes to revealing the spatiotemporal pattern of heart disease-induced changes, but it usually overlooks the intrinsic dynamics of the heart. In clinical practice, multiple non-cardiovascular factors can cause similar spatiotemporal alterations in the heart's electrical activity that those observed in cardiovascular disease. Therefore, accurately diagnosing cardiovascular disease remains a challenging clinical problem. In this paper, we propose a novel multi-scale joint recurrence quantification analysis (MSJRQA) approach that integrates spatiotemporal and dynamic information of ECG signals to distinguish the variations in ECG caused by diverse factors. The ECG signal is first modeled using deterministic learning to capture dynamic information. ECG signal and its dynamics are decomposed into multiple scales by variational mode decomposition (VMD). Subsequently, the spatiotemporal and dynamic information is utilized as input for joint recurrence quantification analysis (JRQA) to characterize spatiotemporal and dynamical patterns of disease induction in ECG signals. Finally, an ensemble classifier is applied to differentiate myocardial infarctions (MI) from healthy individuals and non-MI patients accompanied by ST-T changes. The experimental results demonstrate that the proposed MSJRQA method yields superior results with 94.50% and 90.78% accuracy for the identification of MI and the differentiation of diseases, respectively. Therefore, it can effectively assist cardiologists in the early diagnosis of MI and decision-making.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
廖程发布了新的文献求助10
5秒前
whqpeter完成签到 ,获得积分10
33秒前
54秒前
1分钟前
葛力发布了新的文献求助10
1分钟前
whqpeter发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
阳光刺眼完成签到 ,获得积分10
3分钟前
活力的妙之完成签到 ,获得积分10
3分钟前
4分钟前
哇哈完成签到 ,获得积分10
4分钟前
xiaolang2004发布了新的文献求助10
4分钟前
charih完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
顺顺利利完成签到 ,获得积分10
5分钟前
5分钟前
SharonDu完成签到 ,获得积分10
5分钟前
5分钟前
葛力发布了新的文献求助10
6分钟前
搞怪的靖雁完成签到,获得积分10
6分钟前
6分钟前
隐形曼青应助地瓜儿采纳,获得10
6分钟前
wodetaiyangLLL完成签到 ,获得积分10
6分钟前
6分钟前
地瓜儿发布了新的文献求助10
6分钟前
卓初露完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI2S应助oleskarabach采纳,获得10
8分钟前
Orange应助oleskarabach采纳,获得10
8分钟前
8分钟前
9分钟前
赘婿应助葛力采纳,获得10
10分钟前
Zinio完成签到 ,获得积分10
10分钟前
cndxh完成签到 ,获得积分10
11分钟前
11分钟前
可爱的函函应助榛苓采纳,获得10
12分钟前
12分钟前
下文献的蜉蝣完成签到 ,获得积分10
12分钟前
传奇完成签到 ,获得积分10
12分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
Encyclopedia of Mental Health Reference Work 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3376851
求助须知:如何正确求助?哪些是违规求助? 2992962
关于积分的说明 8752891
捐赠科研通 2677330
什么是DOI,文献DOI怎么找? 1466571
科研通“疑难数据库(出版商)”最低求助积分说明 678385
邀请新用户注册赠送积分活动 669930