胶质纤维酸性蛋白
医学
TLR4型
莫里斯水上航行任务
创伤性脑损伤
神经营养因子
星形胶质细胞
内科学
高架加迷宫
内分泌学
受体
海马体
免疫组织化学
焦虑
中枢神经系统
精神科
作者
Mohd Rabi Bazaz,Amit Asthana,Manoj P. Dandekar
标识
DOI:10.1016/j.ejphar.2024.176436
摘要
The severity of inevitable neurological deficits and long-term psychiatric disorders in the aftermath of traumatic brain injury is influenced by pre-injury biological factors. Herein, we investigated the therapeutic effect of chitosan lactate on neurological and psychiatric aberrations inflicted by circadian disruption (CD) and controlled-cortical impact (CCI) injury in mice. Firstly, CD was developed in mice by altering sporadic day-night cycles for 2 weeks. Then, CCI surgery was performed using a stereotaxic ImpactOne device. Mice subjected to CCI displayed a significant disruption of motor coordination at 1-, 3- and 5-days post-injury (DPI) in the rotarod test. These animals showed anxiety- and depression-like behaviors in the elevated plus maze and forced-swim test at 14 and 15 DPI, respectively. Notably, mice subjected to CD + CCI exhibited severe cognitive impairment in Y-maze and novel object recognition tasks. The compromised neurological, psychiatric, and cognitive functions were mitigated in chitosan-treated mice (1 and 3 mg/mL). Immunohistochemistry and real-time PCR assay results revealed the magnified responses of prima facie biomarkers like glial-fibrillary acidic protein and ionized calcium-binding adaptor molecule 1 in the pericontusional brain region of the CD + CCI group, indicating aggravated inflammation. We also noted the depleted levels of brain-derived neurotrophic factor and augmented expression of toll-like receptor 4 (TLR4)-leucine-rich-containing family pyrin domain-containing 3 (NLRP3) signaling [apoptosis-associated-speck-like protein (ASC), caspase-1, and interleukin 1-β] in the pericontusional area of CD + CCI group. CCI-induced changes in the astrocyte-glia and aggravated immune responses were ameliorated in chitosan-treated mice. These results suggest that the neuroprotective effect of chitosan in CCI-induced brain injury may be mediated by inhibition of the TLR4-NLRP3 axis.
科研通智能强力驱动
Strongly Powered by AbleSci AI