ECPS: Cross Pseudo Supervision Based on Ensemble Learning for Semi-Supervised Remote Sensing Change Detection

变更检测 计算机科学 遥感 人工智能 集成学习 地质学
作者
Yuqun Yang,Xu Tang,Jingjing Ma,Xiangrong Zhang,Shiji Pei,Licheng Jiao
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:6
标识
DOI:10.1109/tgrs.2024.3370236
摘要

Semi-supervised learning aims to exploit the potential of unlabeled data to enhance model performance, which makes it suitable for addressing the challenge of limited labeled data. As a popular technology, pseudo-label is widely applied in many semi-supervised remote sensing (RS) change detection methods. However, when facing limited labeled data, abundant low-quality pseudo-labels from a poorly-performing model hinder the effective enhancement of model performance. To address this issue, we propose a novel semi-supervised strategy, named ensemble cross pseudo supervision (ECPS). The utilization of ensemble learning to merge outputs from several change detection models enhances pseudo-label quality, leading to more accurate change information and a significant boost in model performance, even with limited labeled data. In this method, adopting crosswise supervision ensures that no additional inference costs caused by ensemble learning are consumed. This provides both high efficiency and effectiveness for identifying land-cover changes. On the other hand, a simple yet effective ensemble strategy is proposed, which allows to manually adjust the model's tendency towards higher precision or recall for satisfying practical requirements. We conduct extensive experiments on four public RS change detection datasets, and the promising results demonstrate the superiority of the proposed method across various numbers of labeled samples. Our source codes are available at https://github.com/TangXu-Group/ECPS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zq1992nl完成签到,获得积分10
刚刚
胖小羊发布了新的文献求助10
刚刚
收拾收拾完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
慧海拾穗完成签到 ,获得积分10
1秒前
扁桃体永不发炎完成签到 ,获得积分10
1秒前
汉桑波欸完成签到,获得积分10
1秒前
guishouyu完成签到 ,获得积分10
3秒前
Willy完成签到 ,获得积分10
3秒前
3秒前
ZnPPt完成签到,获得积分10
3秒前
jj完成签到,获得积分10
3秒前
next完成签到,获得积分10
4秒前
小凡凡完成签到,获得积分10
4秒前
充电宝应助李朝富采纳,获得10
4秒前
DLDL完成签到,获得积分10
5秒前
乌龟娟完成签到,获得积分10
5秒前
libiqing77完成签到,获得积分10
5秒前
5秒前
liuchao发布了新的文献求助10
5秒前
5秒前
莫离完成签到,获得积分10
6秒前
6秒前
动听的柠檬完成签到,获得积分10
7秒前
7秒前
领导范儿应助兴奋的冥茗采纳,获得10
8秒前
梁永强发布了新的文献求助10
8秒前
秋枫忆完成签到,获得积分10
8秒前
8秒前
anny2022完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
羽言完成签到,获得积分10
11秒前
11秒前
躺赢局局长完成签到 ,获得积分10
11秒前
三杠完成签到 ,获得积分10
11秒前
BZPL完成签到,获得积分10
11秒前
青山完成签到,获得积分10
12秒前
超帅花瓣完成签到,获得积分10
12秒前
沉静立辉完成签到,获得积分10
13秒前
聪明夏天完成签到,获得积分10
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661277
求助须知:如何正确求助?哪些是违规求助? 3222314
关于积分的说明 9744806
捐赠科研通 2931943
什么是DOI,文献DOI怎么找? 1605318
邀请新用户注册赠送积分活动 757835
科研通“疑难数据库(出版商)”最低求助积分说明 734569