A Survey of Few-Shot Image Classification Based on Transfer Learning

学习迁移 计算机科学 上下文图像分类 人工智能 特征向量 领域(数学分析) 特征(语言学) 图像(数学) 模式识别(心理学) 机器学习 空格(标点符号) 特征提取 数据挖掘 数学 数学分析 语言学 哲学 操作系统
作者
Haifeng Wei,Lianmeng Jiao
标识
DOI:10.1109/prai59366.2023.10332131
摘要

Although the application scenarios of image classification are very extensive, it is difficult to collect enough data to train the deep learning model in many scenarios. Transfer learning is the main approach for image classification with few-shot samples. Using transfer learning, the knowledge and experience learned by the model in the source domain are transferred to the target domain, so that the model can be quickly learned and generalized in the target domain, reducing the dependence on the target domain data. This paper conducts a systemic survey for few-shot image classification algorithms based on transfer learning. According to the differences in distribution, feature space and label space of source domain and target domain, the reviewed algorithms are roughly divided into three categories: the first category is that the distribution is different, but the feature space and label space are the same, which can be solved by distribution adaptation; the second type is that the distribution and feature space are the same, but the label space is different, in which case the meta-learning method is used; the last one is with different feature spaces, which uses heterogeneous data to assist image classification. This survey introduces the three categories of algorithms to help readers better understand the current research status. Finally, in order to demonstrate the performance of different transfer learning algorithms in few-shot image classification, we conducted experiments on Office-31 and Mini-ImageNet datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LeungYM完成签到 ,获得积分10
1秒前
1秒前
无奈奇异果完成签到 ,获得积分10
5秒前
sxy完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
14秒前
奥特超曼应助天边采纳,获得10
17秒前
18秒前
20秒前
20秒前
好的番茄loconte完成签到,获得积分10
20秒前
21秒前
贪玩星发布了新的文献求助10
23秒前
薛家泰完成签到 ,获得积分10
23秒前
驾驶人意图预测完成签到,获得积分10
24秒前
砰砰完成签到 ,获得积分10
25秒前
26秒前
赘婿应助好的番茄loconte采纳,获得10
26秒前
小蘑菇应助Cookies采纳,获得10
26秒前
pgdddh发布了新的文献求助10
27秒前
橙子发布了新的文献求助10
29秒前
31秒前
dd完成签到,获得积分10
33秒前
34秒前
bkagyin应助受伤翠容采纳,获得10
35秒前
吴亦凡女朋友完成签到,获得积分10
36秒前
啾栖发布了新的文献求助30
37秒前
时尚战斗机应助wang采纳,获得10
38秒前
恍若发布了新的文献求助10
39秒前
我又可以了完成签到,获得积分10
42秒前
陈思完成签到,获得积分10
43秒前
Lzt发布了新的文献求助10
44秒前
44秒前
孙福禄应助恍若采纳,获得10
47秒前
49秒前
善学以致用应助李李李采纳,获得10
50秒前
陈杭鑫应助lc采纳,获得10
51秒前
merrylake完成签到 ,获得积分10
51秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993097
求助须知:如何正确求助?哪些是违规求助? 3534001
关于积分的说明 11264347
捐赠科研通 3273705
什么是DOI,文献DOI怎么找? 1806142
邀请新用户注册赠送积分活动 883003
科研通“疑难数据库(出版商)”最低求助积分说明 809652