Transformer-based Discriminative and Strong Representation Deep Hashing for Cross-Modal Retrieval

计算机科学 判别式 散列函数 人工智能 特征学习 变压器 利用 编码器 自然语言处理 情报检索 模式识别(心理学) 物理 计算机安全 量子力学 电压 操作系统
作者
Suqing Zhou,Yang Han,Ning Chen,Siyu Huang,Kostromitin Konstantin Igorevich,Jie Luo,Peiying Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 140041-140055
标识
DOI:10.1109/access.2023.3339581
摘要

Cross-modal hashing retrieval has attracted extensive attention due to its low storage requirements as well as high retrieval efficiency. In particular, how to more fully exploit the correlation of different modality data and generate a more distinguished representation is the key to improving the performance of this method. Moreover, Transformer-based models have been widely used in various fields, including natural language processing, due to their powerful contextual information processing capabilities. Based on these motivations, we propose a Transformer-based Distinguishing Strong Representation Deep Hashing (TDSRDH). For text modality, since the sequential relations between words imply semantic relations that are not independent relations, we thoughtfully encode them using a transformer-based encoder to obtain a strong representation. In addition, we propose a triple-supervised loss based on the commonly used pairwise loss and quantization loss. The latter two ensure the learned features and hash-codes can preserve the similarity of the original data during the learning process. The former ensures that the distance between similar instances is closer and the distance between dissimilar instances is farther. So that TDSRDH can generate more discriminative representations while preserving the similarity between modalities. Finally, experiments on the three datasets MIRFLICKR-25K , IAPR TC-12 , and NUS-WIDE demonstrated the superiority of TDSRDH over the other baselines. Moreover, the effectiveness of the proposed idea was demonstrated by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
2秒前
bkagyin应助无住生心采纳,获得10
4秒前
桐桐应助ZHEN采纳,获得10
4秒前
4秒前
chdin发布了新的文献求助30
5秒前
梦里见陈情完成签到,获得积分10
6秒前
打工人完成签到,获得积分10
7秒前
flac完成签到,获得积分10
7秒前
7秒前
星辰大海应助白敬亭采纳,获得10
10秒前
香蕉觅云应助chdin采纳,获得30
11秒前
13秒前
可靠的念柏应助小龙采纳,获得20
14秒前
15秒前
不配.应助nn采纳,获得10
15秒前
温柔皮皮虾完成签到,获得积分10
16秒前
狮子毛毛完成签到 ,获得积分10
16秒前
16秒前
16秒前
大胆绿茶发布了新的文献求助10
18秒前
qiu完成签到,获得积分10
20秒前
啾啾完成签到,获得积分10
20秒前
无住生心发布了新的文献求助10
21秒前
Jasper应助Kyogoku采纳,获得10
22秒前
26秒前
CodeCraft应助深情映冬采纳,获得10
26秒前
英俊的铭应助科研通管家采纳,获得50
28秒前
上官若男应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得10
29秒前
29秒前
Akim应助科研通管家采纳,获得10
29秒前
酷波er应助科研通管家采纳,获得10
29秒前
思源应助科研通管家采纳,获得10
29秒前
丘比特应助科研通管家采纳,获得10
29秒前
慕青应助科研通管家采纳,获得20
29秒前
30秒前
kevin发布了新的文献求助10
30秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141296
求助须知:如何正确求助?哪些是违规求助? 2792352
关于积分的说明 7802183
捐赠科研通 2448490
什么是DOI,文献DOI怎么找? 1302608
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237