Transformer-based Discriminative and Strong Representation Deep Hashing for Cross-Modal Retrieval

计算机科学 判别式 散列函数 人工智能 特征学习 变压器 利用 编码器 自然语言处理 情报检索 模式识别(心理学) 物理 计算机安全 量子力学 电压 操作系统
作者
Suqing Zhou,Yang Han,Ning Chen,Siyu Huang,Kostromitin Konstantin Igorevich,Jie Luo,Peiying Zhang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 140041-140055
标识
DOI:10.1109/access.2023.3339581
摘要

Cross-modal hashing retrieval has attracted extensive attention due to its low storage requirements as well as high retrieval efficiency. In particular, how to more fully exploit the correlation of different modality data and generate a more distinguished representation is the key to improving the performance of this method. Moreover, Transformer-based models have been widely used in various fields, including natural language processing, due to their powerful contextual information processing capabilities. Based on these motivations, we propose a Transformer-based Distinguishing Strong Representation Deep Hashing (TDSRDH). For text modality, since the sequential relations between words imply semantic relations that are not independent relations, we thoughtfully encode them using a transformer-based encoder to obtain a strong representation. In addition, we propose a triple-supervised loss based on the commonly used pairwise loss and quantization loss. The latter two ensure the learned features and hash-codes can preserve the similarity of the original data during the learning process. The former ensures that the distance between similar instances is closer and the distance between dissimilar instances is farther. So that TDSRDH can generate more discriminative representations while preserving the similarity between modalities. Finally, experiments on the three datasets MIRFLICKR-25K , IAPR TC-12 , and NUS-WIDE demonstrated the superiority of TDSRDH over the other baselines. Moreover, the effectiveness of the proposed idea was demonstrated by ablation experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sweetbearm应助潦草采纳,获得10
1秒前
sunsunsun发布了新的文献求助10
1秒前
酷波er应助Mars采纳,获得10
2秒前
迪士尼在逃后母完成签到,获得积分10
2秒前
2秒前
我是老大应助su采纳,获得10
3秒前
hhh发布了新的文献求助10
4秒前
5秒前
科研通AI5应助魏伯安采纳,获得10
6秒前
6秒前
神可馨完成签到 ,获得积分10
7秒前
Hangerli发布了新的文献求助20
7秒前
HealthyCH完成签到,获得积分10
7秒前
li完成签到,获得积分10
8秒前
9秒前
ononon发布了新的文献求助10
11秒前
11秒前
liu完成签到,获得积分10
13秒前
LWJ发布了新的文献求助10
14秒前
15秒前
大反应釜完成签到,获得积分10
15秒前
TT发布了新的文献求助10
18秒前
Jenny发布了新的文献求助10
20秒前
20秒前
完美凝竹发布了新的文献求助10
20秒前
我是站长才怪应助细腻沅采纳,获得10
21秒前
JG完成签到 ,获得积分10
21秒前
hhh完成签到,获得积分20
21秒前
科研通AI5应助想瘦的海豹采纳,获得10
22秒前
随性完成签到 ,获得积分10
22秒前
自由的信仰完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
夏夏发布了新的文献求助10
27秒前
打打应助Hangerli采纳,获得10
29秒前
完美凝竹完成签到,获得积分10
30秒前
zfzf0422发布了新的文献求助10
31秒前
蜘蛛道理完成签到 ,获得积分10
31秒前
冷傲迎梦发布了新的文献求助10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824