计算机科学
判别式
散列函数
人工智能
特征学习
变压器
利用
编码器
自然语言处理
情报检索
模式识别(心理学)
物理
计算机安全
量子力学
电压
操作系统
作者
Suqing Zhou,Yang Han,Ning Chen,Siyu Huang,Kostromitin Konstantin Igorevich,Jie Luo,Peiying Zhang
出处
期刊:IEEE Access
[Institute of Electrical and Electronics Engineers]
日期:2023-01-01
卷期号:11: 140041-140055
标识
DOI:10.1109/access.2023.3339581
摘要
Cross-modal hashing retrieval has attracted extensive attention due to its low storage requirements as well as high retrieval efficiency. In particular, how to more fully exploit the correlation of different modality data and generate a more distinguished representation is the key to improving the performance of this method. Moreover, Transformer-based models have been widely used in various fields, including natural language processing, due to their powerful contextual information processing capabilities. Based on these motivations, we propose a Transformer-based Distinguishing Strong Representation Deep Hashing (TDSRDH). For text modality, since the sequential relations between words imply semantic relations that are not independent relations, we thoughtfully encode them using a transformer-based encoder to obtain a strong representation. In addition, we propose a triple-supervised loss based on the commonly used pairwise loss and quantization loss. The latter two ensure the learned features and hash-codes can preserve the similarity of the original data during the learning process. The former ensures that the distance between similar instances is closer and the distance between dissimilar instances is farther. So that TDSRDH can generate more discriminative representations while preserving the similarity between modalities. Finally, experiments on the three datasets MIRFLICKR-25K , IAPR TC-12 , and NUS-WIDE demonstrated the superiority of TDSRDH over the other baselines. Moreover, the effectiveness of the proposed idea was demonstrated by ablation experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI