Content-Aware Quantization Index Modulation: Leveraging Data Statistics for Enhanced Image Watermarking

数字水印 嵌入 计算机科学 信息隐藏 隐写术 解码方法 水印 人工智能 失真(音乐) 算法 数学 模式识别(心理学) 图像(数学) 计算机网络 放大器 带宽(计算)
作者
Junlong Mao,Huiyi Tang,Shanxiang Lyu,Zhengchun Zhou,Xiaochun Cao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1935-1947 被引量:12
标识
DOI:10.1109/tifs.2023.3342612
摘要

Image watermarking techniques have continuously evolved to address new challenges and incorporate advanced features. The advent of data-driven approaches has enabled the processing and analysis of large volumes of data, extracting valuable insights and patterns. In this paper, we propose two content-aware quantization index modulation (QIM) algorithms: Content-Aware QIM (CA-QIM) and Content-Aware Minimum Distortion QIM (CAMD-QIM). These algorithms aim to improve the embedding distortion of QIM-based watermarking schemes by considering the statistics of the cover signal vectors and messages. CA-QIM introduces a canonical labeling approach, where the closest coset to each cover vector is determined during the embedding process. An adjacency matrix is constructed to capture the relationships between the cover vectors and messages. CAMD-QIM extends the concept of minimum distortion (MD) principle to content-aware QIM. Instead of quantizing the carriers to lattice points, CAMD-QIM quantizes them to close points in the correct decoding region. Canonical labeling is also employed in CAMD-QIM to enhance its performance. Both schemes can be categorized as (key-aided) semi-blind watermarking. Simulation results demonstrate the effectiveness of CA-QIM and CAMD-QIM in reducing embedding distortion compared to traditional QIM. The combination of canonical labeling and the minimum distortion principle proves to be powerful, minimizing the need for changes to most cover vectors/carriers. These content-aware QIM algorithms provide improved performance and robustness for watermarking applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
1秒前
xiaoluo发布了新的文献求助10
1秒前
漂亮画板发布了新的文献求助10
3秒前
hfhkjh完成签到,获得积分10
4秒前
rest发布了新的文献求助10
4秒前
秋祭应助gaterina采纳,获得10
5秒前
谷晋羽完成签到,获得积分10
6秒前
自行车完成签到,获得积分10
7秒前
7秒前
8秒前
PengqianGuo完成签到,获得积分10
9秒前
多情怜蕾完成签到,获得积分10
9秒前
10秒前
10秒前
共享精神应助jovrtic采纳,获得10
10秒前
wgky发布了新的文献求助10
11秒前
11秒前
机灵的中蓝完成签到 ,获得积分10
11秒前
水蜜桃完成签到 ,获得积分10
13秒前
15秒前
wsx发布了新的文献求助10
15秒前
半生瓜完成签到,获得积分10
15秒前
外向的涛发布了新的文献求助30
15秒前
王珊发布了新的文献求助10
15秒前
Owen应助MAFAKETHS采纳,获得10
16秒前
酷波er应助无限的小懒虫采纳,获得10
17秒前
白昼潜行完成签到,获得积分10
18秒前
东asdfghjkl完成签到,获得积分10
18秒前
半生瓜发布了新的文献求助10
18秒前
Yuki酱完成签到 ,获得积分10
18秒前
打打应助阿伟喵喵喵采纳,获得10
19秒前
20秒前
21秒前
赘婿应助林海采纳,获得10
21秒前
刘轩瑀完成签到,获得积分10
23秒前
Ava应助翻羽采纳,获得10
23秒前
26秒前
科研通AI6应助橙子采纳,获得10
26秒前
苹果蛋完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649603
求助须知:如何正确求助?哪些是违规求助? 4778715
关于积分的说明 15049374
捐赠科研通 4808630
什么是DOI,文献DOI怎么找? 2571661
邀请新用户注册赠送积分活动 1528083
关于科研通互助平台的介绍 1486851