Content-Aware Quantization Index Modulation: Leveraging Data Statistics for Enhanced Image Watermarking

数字水印 嵌入 计算机科学 信息隐藏 隐写术 解码方法 水印 人工智能 失真(音乐) 算法 数学 模式识别(心理学) 图像(数学) 计算机网络 放大器 带宽(计算)
作者
JC Mao,Huiping Tang,Shanxiang Lyu,Zhengchun Zhou,Xiaochun Cao
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:19: 1935-1947
标识
DOI:10.1109/tifs.2023.3342612
摘要

Image watermarking techniques have continuously evolved to address new challenges and incorporate advanced features. The advent of data-driven approaches has enabled the processing and analysis of large volumes of data, extracting valuable insights and patterns. In this paper, we propose two content-aware quantization index modulation (QIM) algorithms: Content-Aware QIM (CA-QIM) and Content-Aware Minimum Distortion QIM (CAMD-QIM). These algorithms aim to improve the embedding distortion of QIM-based watermarking schemes by considering the statistics of the cover signal vectors and messages. CA-QIM introduces a canonical labeling approach, where the closest coset to each cover vector is determined during the embedding process. An adjacency matrix is constructed to capture the relationships between the cover vectors and messages. CAMD-QIM extends the concept of minimum distortion (MD) principle to content-aware QIM. Instead of quantizing the carriers to lattice points, CAMD-QIM quantizes them to close points in the correct decoding region. Canonical labeling is also employed in CAMD-QIM to enhance its performance. Both schemes can be categorized as (key-aided) semi-blind watermarking. Simulation results demonstrate the effectiveness of CA-QIM and CAMD-QIM in reducing embedding distortion compared to traditional QIM. The combination of canonical labeling and the minimum distortion principle proves to be powerful, minimizing the need for changes to most cover vectors/carriers. These content-aware QIM algorithms provide improved performance and robustness for watermarking applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
刘佳敏完成签到 ,获得积分10
1秒前
共享精神应助kk子采纳,获得10
3秒前
泽锦臻发布了新的文献求助10
5秒前
FashionBoy应助dz采纳,获得10
6秒前
ShengzhangLiu完成签到,获得积分10
6秒前
6秒前
q792309106发布了新的文献求助10
6秒前
susu发布了新的文献求助10
6秒前
7秒前
zhumeinv发布了新的文献求助10
8秒前
ShengzhangLiu发布了新的文献求助10
10秒前
11秒前
秀丽莛完成签到,获得积分10
13秒前
恋雅颖月应助zozo采纳,获得10
14秒前
xxxxx完成签到,获得积分10
14秒前
谨慎的哈密瓜完成签到 ,获得积分10
15秒前
16秒前
17秒前
17秒前
李爱国应助无奈的幻雪采纳,获得10
19秒前
华仔完成签到,获得积分10
19秒前
21秒前
22秒前
qi0625完成签到,获得积分10
23秒前
cxlhzq完成签到,获得积分10
23秒前
爆米花应助zhangmuying采纳,获得10
24秒前
科研yu完成签到,获得积分10
24秒前
胡凤凰完成签到,获得积分10
27秒前
gg发布了新的文献求助10
28秒前
chen发布了新的文献求助10
28秒前
吹梦西洲完成签到,获得积分10
30秒前
请叫我风吹麦浪应助PureLIN采纳,获得30
32秒前
fhbsdufh完成签到,获得积分10
32秒前
tomato关注了科研通微信公众号
33秒前
2Cd完成签到,获得积分10
34秒前
桃博完成签到,获得积分10
34秒前
34秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991883
求助须知:如何正确求助?哪些是违规求助? 3533014
关于积分的说明 11260344
捐赠科研通 3272297
什么是DOI,文献DOI怎么找? 1805688
邀请新用户注册赠送积分活动 882609
科研通“疑难数据库(出版商)”最低求助积分说明 809425