A hybrid method based on proper orthogonal decomposition and deep neural networks for flow and heat field reconstruction

可解释性 杠杆(统计) 计算机科学 人工神经网络 瓶颈 领域(数学) 数学优化 最优化问题 深度学习 算法 人工智能 机器学习 数学 纯数学 嵌入式系统
作者
Xiaoyu Zhao,Xiaoqian Chen,Zhiqiang Gong,Wen Yao,Yunyang Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:247: 123137-123137
标识
DOI:10.1016/j.eswa.2024.123137
摘要

Estimating the full state of physical systems, including thermal and flow status, from sparse measurements of limited sensors is a critical technology for perception and control. Neural networks have been used in recent studies to reconstruct the global field in a supervised learning paradigm. However, these studies encounter two major challenges: the lack of interpretability of black-box models and performance bottleneck caused by network structure and parameter optimization. This paper proposes a hybrid method based on proper orthogonal decomposition (POD) and deep neural networks (DNNs) to further enhance the interpretability and accuracy of flow and heat field reconstruction. The key idea is to leverage the inherent data modes extracted by POD that capture essential features in physical fields, and formulate the reconstruction problem as finding an optimal linear combination of dominant POD modes. To reduce the error introduced by underfitting and model structure, this paper estimates the coefficients of POD modes by establishing and solving a linear optimization problem that minimizes the gap between the recovered field and the exact measurements, rather than employing regression models. However, the underdetermined issue cased by the sparse measurements restricts the optimization problem to obtain a proper solution. To alleviate this problem, this paper presents to utilize the powerful non-linear approximation ability of DNNs to produce a reference field as auxiliary observations, which combines exact measurements to jointly constrain the optimization problem solving. Finally, the global physical field is reconstructed by superposing dominant POD modes weighted with the solved coefficients. By combining with POD technology, the proposed method can also improve the performance of neural networks on reconstruction problems with large-scale and irregular domains. The experiments conducted on the fluid and thermal benchmarks demonstrate that the proposed method can significantly boost neural network reconstruction performance and outperform existing POD-based methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷路旭发布了新的文献求助10
刚刚
Perry完成签到,获得积分10
刚刚
song发布了新的文献求助10
2秒前
flyxga870825发布了新的文献求助10
2秒前
2秒前
情怀应助姚叶清采纳,获得10
2秒前
2秒前
3秒前
4秒前
詹姆斯发布了新的文献求助10
5秒前
坚强亦丝应助zjh采纳,获得10
5秒前
懵懂的飞机完成签到 ,获得积分10
5秒前
www应助zsn采纳,获得10
6秒前
万能图书馆应助搁浅采纳,获得10
6秒前
7秒前
卯一发布了新的文献求助10
7秒前
7秒前
Giant06230824完成签到,获得积分10
8秒前
爆米花应助song采纳,获得10
8秒前
和谐断天发布了新的文献求助10
10秒前
10秒前
迷路旭完成签到,获得积分10
10秒前
文静的峻熙完成签到,获得积分10
11秒前
万能图书馆应助见川采纳,获得10
11秒前
12秒前
12秒前
mingjie完成签到,获得积分10
13秒前
行者发布了新的文献求助10
13秒前
李爱国应助ZTT采纳,获得10
13秒前
李白白发布了新的文献求助10
14秒前
vivi发布了新的文献求助10
15秒前
无辜玉米完成签到 ,获得积分10
16秒前
爱吃西瓜发布了新的文献求助10
17秒前
18秒前
19秒前
zjh完成签到,获得积分20
20秒前
21秒前
Maribo完成签到,获得积分10
21秒前
YY完成签到 ,获得积分10
21秒前
瞿霞完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
The Laschia-complex (Basidiomycetes) 600
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3540542
求助须知:如何正确求助?哪些是违规求助? 3117849
关于积分的说明 9332719
捐赠科研通 2815618
什么是DOI,文献DOI怎么找? 1547675
邀请新用户注册赠送积分活动 721099
科研通“疑难数据库(出版商)”最低求助积分说明 712445