Parametric Simulation Study of High-Energy Ultrasonic Nondestructive Assessment for Filler Dispersion in Nano-Modified

材料科学 超声波传感器 色散(光学) 信号(编程语言) 声学 非线性系统 无损检测 参数统计 复合材料 光学 计算机科学 物理 统计 数学 量子力学 程序设计语言
作者
Shuo Zhang,Li Cheng,Hanqing Wang,Lijun Yang,Ruijin Liao
标识
DOI:10.1109/ceidp51414.2023.10410497
摘要

The insulation performance of the modified nanomaterials is critical to the safety and stability of the next-generation low-carbon power transmission system, while the dispersion of nanofillers in the dielectrics directly affects the electrical/mechanical/thermal properties. The existing methods for particle dispersion detection in solid polymeric materials are mainly microscopic imaging methods, however, they have a shortage of narrow detection areas and cannot evaluate the material dispersion as a whole. In this paper, we use high-power ultrasonic methods to measure the nonlinearity of different dispersive nanomaterials. To achieve accurate measurement and evaluation, quantitative optimization of excitation signal parameters is the key to high-power ultrasonic detection. Firstly, the nonlinear acoustic fluctuation equations of solid nanocomposite are derived based on the nonlinear acoustic theory. After that, a filler mass fraction of 1% with different agglomeration degrees was modeled and simulated to optimize the excitation ultrasonic parameters. The simulation results show that in the system of epoxy resin-silica particles (mass fraction 1%), the nanomaterial nonlinear coefficient increases by a maximum of 2% with the increase of particle agglomeration, and the dispersion decreases significantly; The optimal frequency range of the excitation signal is 0.1 MHz-5 MHz, and the optimal vibration amplitude is 70 nm. In this paper, the simulation studies accomplish parametric validation of the nonlinear model, preliminarily select the optimal frequency range for signal excitation, determine the optimal amplitude size of the excitation signal, and provide theoretical guidance for the optimal design of the high-energy ultrasonic measurement device.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可派完成签到,获得积分10
2秒前
0001完成签到,获得积分10
2秒前
汉堡包应助等待水绿采纳,获得10
2秒前
2秒前
3秒前
4秒前
徐立涛完成签到,获得积分10
4秒前
科研通AI2S应助TT采纳,获得10
4秒前
乐乐应助执着的导师采纳,获得10
4秒前
汉堡包应助小张同学采纳,获得10
4秒前
小牛发布了新的文献求助10
8秒前
那年那兔那些事完成签到 ,获得积分10
9秒前
科研通AI6应助pin采纳,获得30
10秒前
10秒前
阿橘完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
BowieHuang应助Rex采纳,获得10
11秒前
12秒前
赘婿应助小牛采纳,获得10
13秒前
DDD完成签到,获得积分10
13秒前
13秒前
虚心的如曼完成签到 ,获得积分10
13秒前
情怀应助黄小米采纳,获得30
14秒前
蚊子完成签到,获得积分10
14秒前
啊啊啊啊完成签到,获得积分10
15秒前
painting发布了新的文献求助10
15秒前
16秒前
16秒前
领导范儿应助葡萄小伊ovo采纳,获得10
16秒前
海盐气泡水完成签到,获得积分10
17秒前
晨晨完成签到,获得积分10
17秒前
20秒前
传奇3应助坚定的又莲采纳,获得10
20秒前
吧KO完成签到,获得积分10
20秒前
雪莉发布了新的文献求助10
21秒前
21秒前
21秒前
21秒前
慕青应助酷炫翠柏采纳,获得30
22秒前
柴yuki完成签到 ,获得积分10
22秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580844
求助须知:如何正确求助?哪些是违规求助? 4665585
关于积分的说明 14756750
捐赠科研通 4607138
什么是DOI,文献DOI怎么找? 2528135
邀请新用户注册赠送积分活动 1497453
关于科研通互助平台的介绍 1466427