Bootstrapping Interactive Image–Text Alignment for Remote Sensing Image Captioning

计算机科学 隐藏字幕 人工智能 冗余(工程) 遥感 编码器 计算机视觉 变压器 特征提取 图像(数学) 地质学 物理 量子力学 电压 操作系统
作者
Cong Yang,Zuchao Li,Lefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:20
标识
DOI:10.1109/tgrs.2024.3359316
摘要

Recently, remote sensing image captioning has gained significant attention in the remote sensing community. Due to the significant differences in spatial resolution of remote sensing images, existing methods in this field have predominantly concentrated on the fine-grained extraction of remote sensing image features, but they cannot effectively handle the semantic consistency between visual features and textual features. To efficiently align the image-text, we propose a novel two-stage vision-language pre-training-based approach to bootstrap interactive image-text alignment for remote sensing image captioning, called BITA, which relies on the design of a lightweight interactive Fourier Transformer to better align remote sensing image-text features. The Fourier layer in the interactive Fourier Transformer is capable of extracting multi-scale features of remote sensing images in the frequency domain, thereby reducing the redundancy of remote sensing visual features. Specifically, the first stage involves preliminary alignment through image-text contrastive learning, which aligns the learned multi-scale remote sensing features from the interactive Fourier Transformer with textual features. In the second stage, the interactive Fourier Transformer connects the frozen image encoder with a large language model. Then, prefix causal language modeling is utilized to guide the text generation process using visual features. Ultimately, across the UCM-caption, RSICD, and NWPU-caption datasets, the experimental results clearly demonstrate that BITA outperforms other advanced comparative approaches. The code is available at https://github.com/yangcong356/BITA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁一完成签到,获得积分20
刚刚
浮游应助Frank采纳,获得10
刚刚
深情安青应助柳橙采纳,获得20
刚刚
zhaowei发布了新的文献求助10
1秒前
1秒前
kamenashi完成签到,获得积分10
2秒前
单薄的煎蛋完成签到,获得积分10
2秒前
吒猫发布了新的文献求助10
2秒前
dis完成签到,获得积分10
3秒前
青山发布了新的文献求助10
3秒前
3秒前
11完成签到 ,获得积分10
3秒前
zhhhh发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
5秒前
汉堡包应助亿眼万年采纳,获得10
6秒前
BleSSinG完成签到,获得积分10
6秒前
谦让的语柳完成签到 ,获得积分10
6秒前
zhaoxu发布了新的文献求助10
6秒前
奋斗的无色完成签到,获得积分20
7秒前
王堃历发布了新的文献求助10
8秒前
8秒前
9秒前
七彩光应助jiezhao采纳,获得10
9秒前
机械腾完成签到,获得积分10
9秒前
怡然咖啡豆完成签到,获得积分10
10秒前
天天快乐应助kamenashi采纳,获得10
10秒前
折纸发布了新的文献求助10
10秒前
小马甲应助周小丁采纳,获得10
11秒前
SHINING发布了新的文献求助10
11秒前
朔望发布了新的文献求助10
12秒前
changping完成签到,获得积分0
12秒前
安德鲁完成签到,获得积分10
13秒前
充电宝应助晚星采纳,获得10
13秒前
陈帅完成签到,获得积分10
13秒前
研友_Good Hope完成签到,获得积分10
13秒前
健忘的灵槐完成签到,获得积分10
14秒前
zhu_完成签到,获得积分20
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5166574
求助须知:如何正确求助?哪些是违规求助? 4358543
关于积分的说明 13570767
捐赠科研通 4205109
什么是DOI,文献DOI怎么找? 2306149
邀请新用户注册赠送积分活动 1305922
关于科研通互助平台的介绍 1252367