Bootstrapping Interactive Image–Text Alignment for Remote Sensing Image Captioning

计算机科学 隐藏字幕 人工智能 冗余(工程) 遥感 编码器 计算机视觉 变压器 特征提取 图像(数学) 地质学 物理 量子力学 电压 操作系统
作者
Cong Yang,Zuchao Li,Lefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:16
标识
DOI:10.1109/tgrs.2024.3359316
摘要

Recently, remote sensing image captioning has gained significant attention in the remote sensing community. Due to the significant differences in spatial resolution of remote sensing images, existing methods in this field have predominantly concentrated on the fine-grained extraction of remote sensing image features, but they cannot effectively handle the semantic consistency between visual features and textual features. To efficiently align the image-text, we propose a novel two-stage vision-language pre-training-based approach to bootstrap interactive image-text alignment for remote sensing image captioning, called BITA, which relies on the design of a lightweight interactive Fourier Transformer to better align remote sensing image-text features. The Fourier layer in the interactive Fourier Transformer is capable of extracting multi-scale features of remote sensing images in the frequency domain, thereby reducing the redundancy of remote sensing visual features. Specifically, the first stage involves preliminary alignment through image-text contrastive learning, which aligns the learned multi-scale remote sensing features from the interactive Fourier Transformer with textual features. In the second stage, the interactive Fourier Transformer connects the frozen image encoder with a large language model. Then, prefix causal language modeling is utilized to guide the text generation process using visual features. Ultimately, across the UCM-caption, RSICD, and NWPU-caption datasets, the experimental results clearly demonstrate that BITA outperforms other advanced comparative approaches. The code is available at https://github.com/yangcong356/BITA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多潘立酮完成签到,获得积分10
1秒前
1秒前
美味拖拉机完成签到,获得积分10
1秒前
2秒前
Ankh完成签到 ,获得积分10
3秒前
小圆发布了新的文献求助10
4秒前
罗丹明完成签到,获得积分20
4秒前
Qenyo发布了新的文献求助10
5秒前
研友_Y59785应助美味拖拉机采纳,获得10
5秒前
ShengzhangLiu发布了新的文献求助10
7秒前
Rondab应助雨雨雨雨采纳,获得20
7秒前
bai发布了新的文献求助10
7秒前
丁振关注了科研通微信公众号
9秒前
陈陈发布了新的文献求助10
9秒前
xiha西希完成签到,获得积分10
11秒前
情怀应助默默采纳,获得10
12秒前
Nimnse关注了科研通微信公众号
12秒前
NexusExplorer应助小圆采纳,获得10
15秒前
Orange应助无舟采纳,获得10
15秒前
耍酷诗槐应助多潘立酮采纳,获得10
15秒前
bai完成签到,获得积分10
15秒前
齐天大圣应助wcwc12138采纳,获得30
15秒前
摆烂的实验室打工人完成签到,获得积分10
16秒前
甘乐发布了新的文献求助10
16秒前
17秒前
赘婿应助wmmm采纳,获得10
17秒前
ABC发布了新的文献求助30
17秒前
在水一方应助Avalon采纳,获得10
17秒前
科研助手6应助科研通管家采纳,获得10
18秒前
CodeCraft应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
Jasper应助科研通管家采纳,获得10
19秒前
我是老大应助科研通管家采纳,获得10
19秒前
丘比特应助roshan采纳,获得10
19秒前
19秒前
ding应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
19秒前
JamesPei应助科研通管家采纳,获得10
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533047
关于积分的说明 11260505
捐赠科研通 3272347
什么是DOI,文献DOI怎么找? 1805732
邀请新用户注册赠送积分活动 882637
科研通“疑难数据库(出版商)”最低求助积分说明 809425