Bootstrapping Interactive Image–Text Alignment for Remote Sensing Image Captioning

计算机科学 隐藏字幕 人工智能 冗余(工程) 遥感 编码器 计算机视觉 变压器 特征提取 图像(数学) 地质学 物理 量子力学 电压 操作系统
作者
Cong Yang,Zuchao Li,Lefei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-12 被引量:16
标识
DOI:10.1109/tgrs.2024.3359316
摘要

Recently, remote sensing image captioning has gained significant attention in the remote sensing community. Due to the significant differences in spatial resolution of remote sensing images, existing methods in this field have predominantly concentrated on the fine-grained extraction of remote sensing image features, but they cannot effectively handle the semantic consistency between visual features and textual features. To efficiently align the image-text, we propose a novel two-stage vision-language pre-training-based approach to bootstrap interactive image-text alignment for remote sensing image captioning, called BITA, which relies on the design of a lightweight interactive Fourier Transformer to better align remote sensing image-text features. The Fourier layer in the interactive Fourier Transformer is capable of extracting multi-scale features of remote sensing images in the frequency domain, thereby reducing the redundancy of remote sensing visual features. Specifically, the first stage involves preliminary alignment through image-text contrastive learning, which aligns the learned multi-scale remote sensing features from the interactive Fourier Transformer with textual features. In the second stage, the interactive Fourier Transformer connects the frozen image encoder with a large language model. Then, prefix causal language modeling is utilized to guide the text generation process using visual features. Ultimately, across the UCM-caption, RSICD, and NWPU-caption datasets, the experimental results clearly demonstrate that BITA outperforms other advanced comparative approaches. The code is available at https://github.com/yangcong356/BITA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助868采纳,获得10
刚刚
一叶舟完成签到 ,获得积分10
1秒前
xiaozhou完成签到,获得积分10
1秒前
1秒前
受伤的依霜完成签到,获得积分20
1秒前
小王同学完成签到,获得积分10
1秒前
1秒前
lyreruin完成签到,获得积分10
1秒前
虚影完成签到,获得积分10
2秒前
林祥胜完成签到,获得积分10
2秒前
敏感代云完成签到,获得积分10
2秒前
2秒前
科研通AI5应助bbb采纳,获得10
2秒前
2秒前
瑾风阳完成签到,获得积分10
3秒前
琪哒发布了新的文献求助10
3秒前
225455完成签到,获得积分10
3秒前
3秒前
沉默发布了新的文献求助10
3秒前
爆米花应助英勇的面包采纳,获得10
3秒前
3秒前
Hover发布了新的文献求助10
3秒前
烟花应助jyyg采纳,获得10
4秒前
慕青应助Russula_Chu采纳,获得10
5秒前
隐形曼青应助梅哈采纳,获得10
5秒前
居正完成签到,获得积分10
5秒前
123完成签到,获得积分10
5秒前
xiaoran发布了新的文献求助10
5秒前
6秒前
机灵安白发布了新的文献求助10
6秒前
晨风韵雨完成签到,获得积分20
6秒前
夏侯初发布了新的文献求助10
7秒前
7秒前
淡定发布了新的文献求助30
7秒前
Iris发布了新的文献求助20
7秒前
小蘑菇应助敏感笑槐采纳,获得10
8秒前
完美世界应助敏感笑槐采纳,获得10
8秒前
方曦辉发布了新的文献求助10
8秒前
FKKKKSY应助敏感笑槐采纳,获得10
8秒前
123发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4600144
求助须知:如何正确求助?哪些是违规求助? 4010398
关于积分的说明 12416277
捐赠科研通 3690163
什么是DOI,文献DOI怎么找? 2034179
邀请新用户注册赠送积分活动 1067543
科研通“疑难数据库(出版商)”最低求助积分说明 952426