Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 背景(考古学) 弹道 术语 强化学习 领域(数学) 优势和劣势 深度学习 数据科学 人工智能 机器学习 天文 物理 古生物学 语言学 哲学 数学 认识论 纯数学 生物
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier BV]
卷期号:: 100733-100733 被引量:24
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
云舒发布了新的文献求助10
刚刚
务实青筠发布了新的文献求助10
1秒前
张浩关注了科研通微信公众号
2秒前
明亮芯发布了新的文献求助10
2秒前
liuxh123发布了新的文献求助10
3秒前
魏立翔完成签到,获得积分10
4秒前
ED应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
桐桐应助科研通管家采纳,获得10
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
SYLH应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
香蕉觅云应助科研通管家采纳,获得10
7秒前
SYLH应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
牛诗悦完成签到,获得积分10
8秒前
孙福禄应助爱学习的曼卉采纳,获得10
10秒前
满天星发布了新的文献求助10
10秒前
zhangyu应助务实青筠采纳,获得10
11秒前
活泼万言发布了新的文献求助10
13秒前
米花完成签到 ,获得积分10
14秒前
14秒前
Vaibhav发布了新的文献求助10
14秒前
16秒前
小马甲应助mlll采纳,获得10
17秒前
酷波er应助刘先生采纳,获得10
18秒前
小马甲应助Zjx采纳,获得10
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993371
求助须知:如何正确求助?哪些是违规求助? 3534027
关于积分的说明 11264545
捐赠科研通 3273794
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883016
科研通“疑难数据库(出版商)”最低求助积分说明 809652