清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 背景(考古学) 弹道 术语 强化学习 领域(数学) 优势和劣势 深度学习 数据科学 人工智能 机器学习 天文 物理 古生物学 语言学 哲学 数学 认识论 纯数学 生物
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier]
卷期号:: 100733-100733 被引量:54
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
开放青旋应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
27秒前
37秒前
勤奋流沙完成签到 ,获得积分10
43秒前
朴素海亦完成签到 ,获得积分10
52秒前
57秒前
1分钟前
1分钟前
1分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
香蕉觅云应助huenguyenvan采纳,获得10
3分钟前
李健应助阿萨卡先生采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
Ava应助阿萨卡先生采纳,获得10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
4分钟前
李剑鸿完成签到,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210