Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 背景(考古学) 弹道 术语 强化学习 领域(数学) 优势和劣势 深度学习 数据科学 人工智能 机器学习 天文 物理 古生物学 语言学 哲学 数学 认识论 纯数学 生物
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier]
卷期号:: 100733-100733 被引量:54
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
宋宋完成签到 ,获得积分10
刚刚
欣欣完成签到,获得积分10
刚刚
渔渔发布了新的文献求助10
1秒前
ding应助小金采纳,获得10
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
mz完成签到 ,获得积分10
1秒前
2秒前
SciGPT应助从容的水壶采纳,获得10
2秒前
suliuyin发布了新的文献求助10
2秒前
屹舟完成签到 ,获得积分10
2秒前
HuiJN完成签到 ,获得积分10
3秒前
yiliu完成签到,获得积分10
3秒前
123完成签到,获得积分10
3秒前
FashionBoy应助RONG采纳,获得10
3秒前
3秒前
kekong完成签到,获得积分10
4秒前
dg_fisher发布了新的文献求助20
4秒前
4秒前
4秒前
kumarr完成签到,获得积分10
6秒前
青山发布了新的文献求助10
6秒前
马大帅完成签到,获得积分10
6秒前
州神发布了新的文献求助10
7秒前
NexusExplorer应助WX2023采纳,获得20
7秒前
1122完成签到,获得积分10
7秒前
1900发布了新的文献求助10
8秒前
LG关闭了LG文献求助
8秒前
9秒前
陈龙发布了新的文献求助10
9秒前
Auralis完成签到 ,获得积分10
10秒前
开心叫兽完成签到,获得积分20
10秒前
楚子关发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
思源应助hhxx采纳,获得10
12秒前
momo完成签到 ,获得积分10
13秒前
一一完成签到,获得积分20
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741647
求助须知:如何正确求助?哪些是违规求助? 5403409
关于积分的说明 15343085
捐赠科研通 4883236
什么是DOI,文献DOI怎么找? 2624979
邀请新用户注册赠送积分活动 1573765
关于科研通互助平台的介绍 1530709