Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 弹道 数据科学 人工智能 机器学习 天文 物理
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier]
卷期号:46: 100733-100733 被引量:9
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsq完成签到,获得积分10
1秒前
1秒前
白石杏完成签到,获得积分10
2秒前
袁大头发布了新的文献求助10
4秒前
Lucas完成签到,获得积分10
6秒前
7秒前
8秒前
33发布了新的文献求助10
8秒前
科研小蚂蚁完成签到,获得积分10
9秒前
9464完成签到 ,获得积分10
10秒前
12秒前
12秒前
冷静如柏完成签到,获得积分10
14秒前
左丘不评完成签到 ,获得积分0
14秒前
元友容完成签到 ,获得积分10
17秒前
22秒前
22秒前
Xiangyang完成签到 ,获得积分10
23秒前
galaxy完成签到 ,获得积分10
26秒前
学术羊发布了新的文献求助10
26秒前
哈哈哈完成签到 ,获得积分10
27秒前
30秒前
迷你的断秋完成签到,获得积分20
31秒前
今后应助手机打卡开不开采纳,获得10
33秒前
开心应助susu采纳,获得10
35秒前
wxm发布了新的文献求助10
36秒前
Jiayou Zhang完成签到,获得积分10
36秒前
海城好人完成签到,获得积分10
37秒前
momo完成签到,获得积分10
39秒前
sapphire_yy完成签到,获得积分10
47秒前
48秒前
土豆淀粉完成签到 ,获得积分10
53秒前
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
Lucky应助科研通管家采纳,获得20
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
NexusExplorer应助科研通管家采纳,获得10
53秒前
圆彰七大完成签到,获得积分20
55秒前
852应助Allen采纳,获得10
57秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140334
求助须知:如何正确求助?哪些是违规求助? 2791068
关于积分的说明 7797887
捐赠科研通 2447569
什么是DOI,文献DOI怎么找? 1301942
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194