亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning for autonomous vehicle's trajectory prediction: A comprehensive survey, challenges, and future research directions

计算机科学 背景(考古学) 弹道 术语 强化学习 领域(数学) 优势和劣势 深度学习 数据科学 人工智能 机器学习 天文 物理 古生物学 语言学 哲学 数学 认识论 纯数学 生物
作者
Vibha Bharilya,Neetesh Kumar
出处
期刊:Vehicular Communications [Elsevier]
卷期号:: 100733-100733 被引量:54
标识
DOI:10.1016/j.vehcom.2024.100733
摘要

The significant contribution of human errors, accounting for approximately 94% (with a margin of ±2.2%), to road crashes leading to casualties, vehicle damages, and safety concerns necessitates the exploration of alternative approaches. Autonomous Vehicles (AVs) have emerged as a promising solution by replacing human drivers with advanced computer-aided decision-making systems. However, for AVs to effectively navigate the road, they must possess the capability to predict the future behaviour of nearby traffic participants, similar to the predictive driving abilities of human drivers. Building upon existing literature is crucial to advance the field and develop a comprehensive understanding of trajectory prediction methods in the context of automated driving. To address this need, we have undertaken a comprehensive review that focuses on trajectory prediction methods for AVs, with a particular emphasis on machine learning techniques including deep learning and reinforcement learning-based approaches. We have extensively examined over two hundred studies related to trajectory prediction in the context of AVs. The paper begins with an introduction to the general problem of predicting vehicle trajectories and provides an overview of the key concepts and terminology used throughout. After providing a brief overview of conventional methods, this review conducts a comprehensive evaluation of several deep learning-based techniques. Each method is summarized briefly, accompanied by a detailed analysis of its strengths and weaknesses. The discussion further extends to reinforcement learning-based methods. This article also examines the various datasets and evaluation metrics that are commonly used in trajectory prediction tasks. Encouraging an unbiased and objective discussion, we compare two major learning processes, considering specific functional features. By identifying challenges in the existing literature and outlining potential research directions, this review significantly contributes to the advancement of knowledge in the domain of AV trajectory prediction. Its primary objective is to streamline current research efforts and offer a futuristic perspective, ultimately benefiting future developments in the field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sandy发布了新的文献求助10
3秒前
科研通AI6应助MIMI采纳,获得10
4秒前
科研通AI6应助邓润杰采纳,获得10
7秒前
在水一方应助傻傻的修洁采纳,获得10
11秒前
科研通AI6应助邓润杰采纳,获得10
16秒前
Akaza完成签到 ,获得积分10
21秒前
24秒前
高兴宝贝完成签到 ,获得积分10
27秒前
打打应助傻傻的修洁采纳,获得10
30秒前
脑洞疼应助munchys采纳,获得10
30秒前
mmyhn发布了新的文献求助10
31秒前
达西苏发布了新的文献求助30
44秒前
科研通AI6应助邓润杰采纳,获得10
47秒前
医无能关注了科研通微信公众号
49秒前
量子星尘发布了新的文献求助10
50秒前
852应助邓润杰采纳,获得10
56秒前
58秒前
one完成签到,获得积分20
1分钟前
ceeray23发布了新的文献求助20
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
华仔应助邓润杰采纳,获得10
1分钟前
达西苏完成签到,获得积分10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
1分钟前
munchys发布了新的文献求助10
1分钟前
Jeanie_J完成签到,获得积分10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
酒渡完成签到,获得积分10
1分钟前
科研通AI6应助邓润杰采纳,获得10
1分钟前
科研通AI6应助邓润杰采纳,获得10
2分钟前
Jeanie_J发布了新的文献求助10
2分钟前
星辰大海应助邓润杰采纳,获得10
2分钟前
科研通AI6应助邓润杰采纳,获得10
2分钟前
Kristopher完成签到 ,获得积分10
2分钟前
科研通AI2S应助邓润杰采纳,获得10
2分钟前
明朗完成签到 ,获得积分10
2分钟前
3分钟前
慕青应助邓润杰采纳,获得10
3分钟前
科研通AI6应助邓润杰采纳,获得10
3分钟前
crane完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573343
求助须知:如何正确求助?哪些是违规求助? 4659427
关于积分的说明 14724572
捐赠科研通 4599247
什么是DOI,文献DOI怎么找? 2524237
邀请新用户注册赠送积分活动 1494711
关于科研通互助平台的介绍 1464737