Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阳光的沧海完成签到 ,获得积分10
刚刚
1秒前
1秒前
Akim应助跑快点采纳,获得10
1秒前
白茶发布了新的文献求助10
1秒前
星际发布了新的文献求助10
1秒前
2秒前
你好完成签到,获得积分10
3秒前
今后应助爱听歌的坤坤采纳,获得10
3秒前
carbonhan发布了新的文献求助10
3秒前
liam完成签到,获得积分10
4秒前
Jane完成签到 ,获得积分10
4秒前
5秒前
希望天下0贩的0应助容止采纳,获得10
6秒前
纪智勇发布了新的文献求助10
6秒前
坦率的海豚完成签到,获得积分10
6秒前
xiang完成签到,获得积分10
8秒前
6lllpp发布了新的文献求助10
8秒前
疯癫科研人完成签到,获得积分10
8秒前
8秒前
Dorren发布了新的文献求助10
8秒前
慕青应助Lee采纳,获得10
9秒前
852应助小雪花采纳,获得10
11秒前
无花果应助别摆烂了采纳,获得10
11秒前
思源应助别摆烂了采纳,获得10
11秒前
共享精神应助别摆烂了采纳,获得10
11秒前
缥缈老九完成签到,获得积分10
11秒前
li发布了新的文献求助10
12秒前
龙彦完成签到,获得积分10
12秒前
wellbeing完成签到,获得积分10
12秒前
MO完成签到,获得积分10
12秒前
121311发布了新的文献求助10
12秒前
脑洞疼应助carbonhan采纳,获得10
12秒前
在水一方应助一小盆芦荟采纳,获得10
14秒前
乐乐应助Eternity2025采纳,获得10
15秒前
6lllpp完成签到,获得积分10
17秒前
17秒前
17秒前
星际完成签到,获得积分10
18秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215500
求助须知:如何正确求助?哪些是违规求助? 4390616
关于积分的说明 13670382
捐赠科研通 4252539
什么是DOI,文献DOI怎么找? 2333148
邀请新用户注册赠送积分活动 1330741
关于科研通互助平台的介绍 1284568