Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ar完成签到,获得积分10
刚刚
郭帅完成签到,获得积分10
1秒前
hui完成签到,获得积分10
2秒前
2秒前
Su完成签到,获得积分10
2秒前
天真笑白完成签到,获得积分10
3秒前
3秒前
ChaseY完成签到,获得积分10
3秒前
赵锐发布了新的文献求助10
3秒前
与可完成签到,获得积分10
3秒前
等风来完成签到 ,获得积分10
4秒前
小土豆完成签到,获得积分10
4秒前
hero_ljw完成签到,获得积分10
4秒前
真不记得用户名完成签到 ,获得积分10
5秒前
英勇的半兰完成签到,获得积分10
6秒前
李健的粉丝团团长应助KKLD采纳,获得10
6秒前
封尘逸动完成签到,获得积分10
6秒前
ATYS完成签到,获得积分10
6秒前
啦啦啦123完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
越幸运完成签到 ,获得积分10
7秒前
xinL发布了新的文献求助10
8秒前
Alan完成签到,获得积分10
8秒前
8秒前
cach完成签到,获得积分10
9秒前
尼古拉耶维奇完成签到,获得积分10
9秒前
可爱的小树苗完成签到,获得积分10
9秒前
萌萌许完成签到,获得积分10
9秒前
11秒前
YG完成签到,获得积分10
11秒前
www发布了新的文献求助10
11秒前
想养一只猫完成签到,获得积分10
11秒前
白垩纪完成签到,获得积分10
11秒前
12秒前
刘威完成签到,获得积分10
12秒前
12秒前
俭朴的发带完成签到,获得积分10
13秒前
zlzly12发布了新的文献求助10
13秒前
kellen完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365