Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mzmz发布了新的文献求助10
刚刚
林昊完成签到,获得积分10
刚刚
1秒前
复苏应助郭mm采纳,获得10
1秒前
samsara完成签到 ,获得积分10
1秒前
铭铭铭完成签到,获得积分10
1秒前
小米应助郭mm采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
我是老大应助九bai采纳,获得10
1秒前
2秒前
2秒前
XI_2001发布了新的文献求助10
2秒前
2秒前
2秒前
xW12123完成签到,获得积分10
3秒前
3秒前
3秒前
季秋十二发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
爱学习的小燕子完成签到,获得积分10
4秒前
4秒前
dato12423完成签到,获得积分10
4秒前
思源应助百事可乐采纳,获得10
4秒前
夏夏发布了新的文献求助10
4秒前
lu完成签到,获得积分10
4秒前
十七完成签到,获得积分10
4秒前
5秒前
直率冷雁发布了新的文献求助10
5秒前
复杂小凡完成签到,获得积分20
5秒前
希望天下0贩的0应助小唐采纳,获得10
5秒前
5秒前
邓什么邓发布了新的文献求助10
5秒前
全力以赴先生完成签到,获得积分10
5秒前
橙子完成签到,获得积分10
5秒前
michael发布了新的文献求助30
6秒前
zz完成签到,获得积分10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210