Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诚心尔琴发布了新的文献求助20
刚刚
华仔应助淡淡乐巧采纳,获得10
刚刚
刚刚
TheGala完成签到,获得积分10
1秒前
eizo完成签到,获得积分10
2秒前
KEYANKEYAN发布了新的文献求助50
3秒前
背后书雪发布了新的文献求助10
5秒前
机智的夏发布了新的文献求助10
5秒前
ssssbbbb完成签到,获得积分10
5秒前
丁丁发布了新的文献求助10
6秒前
Metbutterly完成签到,获得积分10
6秒前
xzh785041403发布了新的文献求助10
7秒前
7秒前
QinQin发布了新的文献求助10
8秒前
8秒前
wjx发布了新的文献求助10
9秒前
cheunsor发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
11秒前
111发布了新的文献求助10
11秒前
典雅雅容完成签到,获得积分10
11秒前
Metbutterly发布了新的文献求助10
11秒前
wisdom完成签到,获得积分10
11秒前
12秒前
xtutang发布了新的文献求助10
12秒前
梓泽丘墟应助爱吃猫的鱼采纳,获得10
13秒前
13秒前
13秒前
13秒前
lalaland完成签到,获得积分20
14秒前
聪明山芙完成签到,获得积分10
14秒前
Junsir发布了新的文献求助10
14秒前
独特灵完成签到 ,获得积分10
15秒前
15秒前
15秒前
小样完成签到,获得积分10
15秒前
失眠绝音发布了新的文献求助10
15秒前
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152922
求助须知:如何正确求助?哪些是违规求助? 2804134
关于积分的说明 7857235
捐赠科研通 2461873
什么是DOI,文献DOI怎么找? 1310502
科研通“疑难数据库(出版商)”最低求助积分说明 629279
版权声明 601788