Patch-Based Convolutional Encoder: A Deep Learning Algorithm for Spectral Classification Balancing the Local and Global Information

人工智能 模式识别(心理学) 深度学习 步伐 计算机科学 自编码 卷积神经网络 化学 物理 天文
作者
Xinyu Lu,Chen-Yue Wang,Hui Tang,Yifei Qin,Cui Li,Xiang Wang,Guokun Liu,Bin Ren
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.analchem.3c03889
摘要

Molecular vibrational spectroscopies, including infrared absorption and Raman scattering, provide molecular fingerprint information and are powerful tools for qualitative and quantitative analysis. They benefit from the recent development of deep-learning-based algorithms to improve the spectral, spatial, and temporal resolutions. Although a variety of deep-learning-based algorithms, including those to simultaneously extract the global and local spectral features, have been developed for spectral classification, the classification accuracy is still far from satisfactory when the difference becomes very subtle. Here, we developed a lightweight algorithm named patch-based convolutional encoder (PACE), which effectively improved the accuracy of spectral classification by extracting spectral features while balancing local and global information. The local information was captured well by segmenting the spectrum into patches with an appropriate patch size. The global information was extracted by constructing the correlation between different patches with depthwise separable convolutions. In the five open-source spectral data sets, PACE achieved a state-of-the-art performance. The more difficult the classification, the better the performance of PACE, compared with that of residual neural network (ResNet), vision transformer (ViT), and other commonly used deep learning algorithms. PACE helped improve the accuracy to 92.1% in Raman identification of pathogen-derived extracellular vesicles at different physiological states, which is much better than those of ResNet (85.1%) and ViT (86.0%). In general, the precise recognition and extraction of subtle differences offered by PACE are expected to facilitate vibrational spectroscopy to be a powerful tool toward revealing the relevant chemical reaction mechanisms in surface science or realizing the early diagnosis in life science.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晚安886完成签到,获得积分10
2秒前
2秒前
爱德华123完成签到 ,获得积分10
3秒前
Lee发布了新的文献求助10
4秒前
852应助巴顿将军采纳,获得10
4秒前
微笑的语芙完成签到,获得积分10
4秒前
汉堡包应助Kiki采纳,获得10
4秒前
5秒前
5秒前
Str0n完成签到,获得积分10
6秒前
6秒前
7秒前
songmt1988完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
北北北发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
Owen应助奋斗的小甜瓜采纳,获得10
10秒前
科学家驳回了Ava应助
10秒前
朱巴子完成签到,获得积分10
11秒前
11秒前
太阳发布了新的文献求助10
11秒前
清爽匪发布了新的文献求助10
12秒前
小白完成签到 ,获得积分10
12秒前
13秒前
慕华完成签到 ,获得积分10
13秒前
13秒前
CY88发布了新的文献求助10
14秒前
14秒前
14秒前
八斤发布了新的文献求助10
15秒前
15秒前
123完成签到,获得积分10
15秒前
青原发布了新的文献求助10
16秒前
深情安青应助热情迎天采纳,获得10
16秒前
科研通AI5应助Lee采纳,获得150
17秒前
大个应助无私幼蓉采纳,获得10
17秒前
量子星尘发布了新的文献求助10
17秒前
邓佳鑫Alan应助大海采纳,获得10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3660183
求助须知:如何正确求助?哪些是违规求助? 3221444
关于积分的说明 9740958
捐赠科研通 2930892
什么是DOI,文献DOI怎么找? 1604709
邀请新用户注册赠送积分活动 757477
科研通“疑难数据库(出版商)”最低求助积分说明 734439