The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved Autoformer

单变量 风速 风力发电 分解 计算机科学 风电预测 时间序列 一般化 小波 系列(地层学) 期限(时间) 数据挖掘 算法 电力系统 功率(物理) 人工智能 机器学习 工程类 气象学 数学 生态学 数学分析 古生物学 物理 多元统计 量子力学 电气工程 生物
作者
Guihua Ban,Yan Chen,Zhenhua Xiong,Yixin Zhuo,Kui Huang
出处
期刊:Energy [Elsevier BV]
卷期号:290: 130225-130225 被引量:1
标识
DOI:10.1016/j.energy.2023.130225
摘要

Accurate wind speed prediction is crucial for effective wind power grid integration and energy dispatching. Recent research has explored the combination of decomposition algorithms with forecast models to form hybrid models, aiming to enhance wind speed prediction accuracy. However, these traditional decomposition techniques often lead to high time costs in practical applications, as they require new wind speed sequences to be appended to historical long sequences for decomposition before entering the forecast model. To overcome this challenge, this study introduces and improves the Autoformer model, applying it for the first time to long-term univariate wind speed forecasting. By incorporating decomposition technology as a sub-module of the forecast model, Autoformer not only solves the high time cost issue found in conventional hybrid models but also retains the benefits of decomposition technology in time series processing.Furthermore, in this paper, the decomposition module of Autoformer is replaced with the Mixture of Expert Decomposition Module (MOEDecomp) to better extract complex trend elements of wind speed series. Combined with the auto-correlation mechanism, sequential attention is paid to wind speed for extracting time dependencies in long series. Additionally, the Wavelet Soft Threshold Denoising (WSTD) algorithm is utilised for noise reduction in wind speed sequences. To evaluate the model's performance, two multi-step forecasting strategies were employed to predict wind speeds for the forthcoming 24, 48, 72, 96, and 120 h using four datasets. Experimental results demonstrate that the proposed model surpasses 15 comparative models in terms of prediction accuracy, generalization ability, and handling uncertain data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无情的菲鹰完成签到,获得积分10
刚刚
啦啦啦啦啦完成签到,获得积分10
刚刚
小孟吖完成签到 ,获得积分10
1秒前
称心不尤完成签到 ,获得积分10
1秒前
huyuan完成签到,获得积分10
1秒前
勤恳怀梦完成签到,获得积分10
1秒前
CrisLEE完成签到,获得积分10
1秒前
LEE123完成签到,获得积分10
2秒前
cdragon完成签到,获得积分10
2秒前
QQ发布了新的文献求助10
3秒前
DUN发布了新的文献求助10
3秒前
伍六七完成签到,获得积分10
4秒前
Hello应助无医采纳,获得10
4秒前
舒适的雁风完成签到,获得积分10
6秒前
性静H情逸完成签到,获得积分10
7秒前
球宝完成签到,获得积分10
7秒前
Ava应助XieQinxie采纳,获得10
7秒前
Cyrus完成签到,获得积分10
8秒前
就滴滴勾儿完成签到,获得积分10
8秒前
章鱼小丸子完成签到 ,获得积分10
8秒前
8秒前
加油少年完成签到,获得积分10
9秒前
小蘑菇应助zhangfan采纳,获得10
9秒前
Sean完成签到,获得积分10
9秒前
天天快乐应助hetao286采纳,获得10
10秒前
十四完成签到 ,获得积分10
10秒前
蒙蒙完成签到 ,获得积分10
10秒前
橙子完成签到 ,获得积分10
11秒前
jkaaa完成签到,获得积分10
11秒前
shi0331完成签到,获得积分10
12秒前
12秒前
阿强哥20241101完成签到,获得积分10
13秒前
迷人芫完成签到,获得积分10
13秒前
13秒前
机会完成签到,获得积分10
13秒前
阳光绿柏完成签到,获得积分10
13秒前
DUN完成签到,获得积分10
14秒前
14秒前
15秒前
QQ完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008933
求助须知:如何正确求助?哪些是违规求助? 3548669
关于积分的说明 11299538
捐赠科研通 3283228
什么是DOI,文献DOI怎么找? 1810311
邀请新用户注册赠送积分活动 886034
科研通“疑难数据库(出版商)”最低求助积分说明 811259