The univariate model for long-term wind speed forecasting based on wavelet soft threshold denoising and improved Autoformer

单变量 风速 风力发电 分解 计算机科学 风电预测 时间序列 一般化 小波 系列(地层学) 期限(时间) 数据挖掘 算法 电力系统 功率(物理) 人工智能 机器学习 工程类 气象学 数学 生态学 数学分析 古生物学 物理 多元统计 量子力学 电气工程 生物
作者
Guihua Ban,Yan Chen,Zhenhua Xiong,Yixin Zhuo,Kui Huang
出处
期刊:Energy [Elsevier]
卷期号:290: 130225-130225 被引量:1
标识
DOI:10.1016/j.energy.2023.130225
摘要

Accurate wind speed prediction is crucial for effective wind power grid integration and energy dispatching. Recent research has explored the combination of decomposition algorithms with forecast models to form hybrid models, aiming to enhance wind speed prediction accuracy. However, these traditional decomposition techniques often lead to high time costs in practical applications, as they require new wind speed sequences to be appended to historical long sequences for decomposition before entering the forecast model. To overcome this challenge, this study introduces and improves the Autoformer model, applying it for the first time to long-term univariate wind speed forecasting. By incorporating decomposition technology as a sub-module of the forecast model, Autoformer not only solves the high time cost issue found in conventional hybrid models but also retains the benefits of decomposition technology in time series processing.Furthermore, in this paper, the decomposition module of Autoformer is replaced with the Mixture of Expert Decomposition Module (MOEDecomp) to better extract complex trend elements of wind speed series. Combined with the auto-correlation mechanism, sequential attention is paid to wind speed for extracting time dependencies in long series. Additionally, the Wavelet Soft Threshold Denoising (WSTD) algorithm is utilised for noise reduction in wind speed sequences. To evaluate the model's performance, two multi-step forecasting strategies were employed to predict wind speeds for the forthcoming 24, 48, 72, 96, and 120 h using four datasets. Experimental results demonstrate that the proposed model surpasses 15 comparative models in terms of prediction accuracy, generalization ability, and handling uncertain data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡定的一德完成签到,获得积分10
刚刚
1秒前
WJ1989发布了新的文献求助10
1秒前
louis发布了新的文献求助10
1秒前
1秒前
啦啦啦啦发布了新的文献求助10
1秒前
2秒前
善学以致用应助小王小王采纳,获得10
2秒前
zmy完成签到,获得积分10
3秒前
小蘑菇应助hope采纳,获得10
3秒前
司徒恋风完成签到,获得积分20
4秒前
称心的晓灵完成签到,获得积分20
4秒前
陶醉的海冬关注了科研通微信公众号
4秒前
希望天下0贩的0应助Rui采纳,获得10
4秒前
6秒前
科目三应助聪慧的致远采纳,获得10
6秒前
笑嘻嘻发布了新的文献求助10
6秒前
阿宿完成签到,获得积分10
7秒前
7秒前
wanci应助Fxxkme采纳,获得10
7秒前
cuicui发布了新的文献求助10
7秒前
8秒前
Orange应助ccalvintan采纳,获得10
9秒前
11秒前
12秒前
Cherry发布了新的文献求助10
12秒前
吉祥应助称心的晓灵采纳,获得30
13秒前
13秒前
13秒前
14秒前
咋还发布了新的文献求助10
15秒前
hope发布了新的文献求助10
16秒前
Kenneyhahaha发布了新的文献求助10
16秒前
17秒前
背后玉米发布了新的文献求助10
18秒前
18秒前
小宋完成签到,获得积分10
18秒前
受伤觅露完成签到,获得积分10
20秒前
笑嘻嘻完成签到,获得积分10
22秒前
丘比特应助小鲤鱼在睡觉采纳,获得10
22秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147903
求助须知:如何正确求助?哪些是违规求助? 2798930
关于积分的说明 7832525
捐赠科研通 2455943
什么是DOI,文献DOI怎么找? 1307025
科研通“疑难数据库(出版商)”最低求助积分说明 627966
版权声明 601587