Accurate and Automatic Dental Crown Components Segmentation With Multi-Scale Attention Based U-Net and Hybrid Level Set Models

分割 计算机科学 人工智能 初始化 图像分割 尺度空间分割 模式识别(心理学) 计算机视觉 程序设计语言
作者
Dongyue Li,Mingzhu Zhu,Shaoan Wang,Yaoqing Hu,Fusong Yuan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tase.2024.3350088
摘要

This paper presents a two-step method to automatically and accurately segment the dental crown components from CT images. Firstly, a multi-scale attention based U-Net model is proposed for pulp segmentation, which is embedded with global and local attention modules. The constructed attention modules can automatically aggregate pixel-wise contextual information and focus on catching the real dental pulp region. Secondly, two efficient level set models are proposed: one is the shape constraint-based level set model for enamel and dentin segmentation, the other is the region mutual exclusion-based level set model for neighboring teeth segmentation. The proposed shape constraint term can better handle topology changes of teeth and the region mutual exclusion term can more effectively avoid intersecting segmentation. Besides, a starting slice initialization method is introduced to achieve automatic segmentation, and an accurate contour propagation strategy is developed for slice-by-slice segmentation. We set up a series of comparative experiments for evaluation. Experimental results verify that the proposed method obtains promising performance for each crown component segmentation, and outperforms state-of-the-art tooth segmentation methods in terms of accuracy. This suggests that the proposed method can be used to accurately segment the crown components for precise tooth preparation treatment. Note to Practitioners —The motivation of this work is to reduce the burden on dentists during tooth preparation treatment, which requires accurate segmentation of crown components (i.e., enamel, dentin, and pulp) from dental CT images. Existing methods only focused on the segmentation of teeth or alveolar bone. Therefore, we present a novel automatic segmentation model for the dental crown components with high accuracy. A key strength of this study is the combination of a data-driven method (deep learning) and model-driven methods (level-set), which can provide good accuracy under limited training samples. This ability is highly desirable for practitioners by saving labor-intensive, costly labeling efforts. Furthermore, our proposed method will provide tools to help reduce subjectivity and human errors, as well as streamline and expedite the clinical workflow. This will significantly facilitate tooth preparation automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxx发布了新的文献求助10
1秒前
2秒前
ben完成签到,获得积分10
2秒前
3秒前
叶远望发布了新的文献求助10
3秒前
木木完成签到,获得积分10
3秒前
4秒前
汉堡包应助如意的子默采纳,获得10
4秒前
5秒前
你的笑慌乱了我的骄傲完成签到 ,获得积分10
6秒前
8秒前
9秒前
领导范儿应助栉风沐雨采纳,获得10
9秒前
10秒前
10秒前
swat完成签到,获得积分10
10秒前
Xue发布了新的文献求助10
10秒前
Yue发布了新的文献求助10
11秒前
11秒前
勤奋青寒发布了新的文献求助10
12秒前
12秒前
搜集达人应助天天向上采纳,获得10
12秒前
Orange应助菲菲采纳,获得10
13秒前
13秒前
zzzz发布了新的文献求助10
13秒前
淡然宛凝完成签到 ,获得积分10
14秒前
成帅哥发布了新的文献求助10
14秒前
14秒前
加减乘除发布了新的文献求助10
16秒前
刘松发布了新的文献求助10
16秒前
烧烤发布了新的文献求助10
19秒前
科目三应助lu采纳,获得10
19秒前
ykl发布了新的文献求助10
19秒前
顺心灵雁完成签到,获得积分10
20秒前
20秒前
舒心豪英完成签到 ,获得积分10
20秒前
开心妍发布了新的文献求助10
21秒前
卖报的小行家完成签到 ,获得积分10
22秒前
xuxingxing发布了新的文献求助30
22秒前
爆米花应助流夏采纳,获得10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292899
求助须知:如何正确求助?哪些是违规求助? 2929167
关于积分的说明 8440197
捐赠科研通 2601177
什么是DOI,文献DOI怎么找? 1419623
科研通“疑难数据库(出版商)”最低求助积分说明 660325
邀请新用户注册赠送积分活动 643007