Accurate and Automatic Dental Crown Components Segmentation With Multi-Scale Attention Based U-Net and Hybrid Level Set Models

分割 计算机科学 人工智能 初始化 图像分割 尺度空间分割 模式识别(心理学) 计算机视觉 程序设计语言
作者
Dongyue Li,Mingzhu Zhu,Shaoan Wang,Yaoqing Hu,Fusong Yuan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tase.2024.3350088
摘要

This paper presents a two-step method to automatically and accurately segment the dental crown components from CT images. Firstly, a multi-scale attention based U-Net model is proposed for pulp segmentation, which is embedded with global and local attention modules. The constructed attention modules can automatically aggregate pixel-wise contextual information and focus on catching the real dental pulp region. Secondly, two efficient level set models are proposed: one is the shape constraint-based level set model for enamel and dentin segmentation, the other is the region mutual exclusion-based level set model for neighboring teeth segmentation. The proposed shape constraint term can better handle topology changes of teeth and the region mutual exclusion term can more effectively avoid intersecting segmentation. Besides, a starting slice initialization method is introduced to achieve automatic segmentation, and an accurate contour propagation strategy is developed for slice-by-slice segmentation. We set up a series of comparative experiments for evaluation. Experimental results verify that the proposed method obtains promising performance for each crown component segmentation, and outperforms state-of-the-art tooth segmentation methods in terms of accuracy. This suggests that the proposed method can be used to accurately segment the crown components for precise tooth preparation treatment. Note to Practitioners —The motivation of this work is to reduce the burden on dentists during tooth preparation treatment, which requires accurate segmentation of crown components (i.e., enamel, dentin, and pulp) from dental CT images. Existing methods only focused on the segmentation of teeth or alveolar bone. Therefore, we present a novel automatic segmentation model for the dental crown components with high accuracy. A key strength of this study is the combination of a data-driven method (deep learning) and model-driven methods (level-set), which can provide good accuracy under limited training samples. This ability is highly desirable for practitioners by saving labor-intensive, costly labeling efforts. Furthermore, our proposed method will provide tools to help reduce subjectivity and human errors, as well as streamline and expedite the clinical workflow. This will significantly facilitate tooth preparation automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
星辰大海应助粥粥采纳,获得10
1秒前
科研通AI5应助朴素小鸟胃采纳,获得10
1秒前
彭于晏应助拈花采纳,获得10
1秒前
NN发布了新的文献求助20
1秒前
烟雨行舟发布了新的文献求助10
2秒前
huang完成签到,获得积分20
2秒前
君莫笑完成签到 ,获得积分10
3秒前
赘婿应助ruby采纳,获得10
3秒前
爱科研的佳慧完成签到,获得积分10
4秒前
小只bb完成签到,获得积分10
4秒前
5秒前
Akim应助lxh2424采纳,获得10
5秒前
爆米花应助dingdong采纳,获得10
6秒前
xtqgyy驳回了大个应助
6秒前
赘婿应助斯文芷荷采纳,获得10
6秒前
kss完成签到,获得积分10
6秒前
7秒前
7秒前
Hupoo完成签到,获得积分10
7秒前
田様应助demonox采纳,获得10
7秒前
粥粥完成签到,获得积分10
7秒前
8秒前
光电很亮完成签到,获得积分10
8秒前
励志梦发布了新的文献求助10
8秒前
Fluoxetine完成签到,获得积分10
9秒前
9秒前
冰糖葫芦娃完成签到 ,获得积分10
10秒前
我是站长才怪完成签到,获得积分0
10秒前
魔幻灵槐发布了新的文献求助10
11秒前
文献互助1完成签到 ,获得积分10
11秒前
星空完成签到,获得积分10
12秒前
LJL发布了新的文献求助10
12秒前
LiShin发布了新的文献求助10
12秒前
蟹黄堡不打折完成签到,获得积分10
12秒前
我必做出来完成签到,获得积分10
13秒前
安凉发布了新的文献求助10
13秒前
慕青应助Hupoo采纳,获得10
13秒前
14秒前
1l2kl完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794