Accurate and Automatic Dental Crown Components Segmentation With Multi-Scale Attention Based U-Net and Hybrid Level Set Models

分割 计算机科学 人工智能 初始化 图像分割 尺度空间分割 模式识别(心理学) 计算机视觉 程序设计语言
作者
Dongyue Li,Mingzhu Zhu,Shaoan Wang,Yaoqing Hu,Fusong Yuan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tase.2024.3350088
摘要

This paper presents a two-step method to automatically and accurately segment the dental crown components from CT images. Firstly, a multi-scale attention based U-Net model is proposed for pulp segmentation, which is embedded with global and local attention modules. The constructed attention modules can automatically aggregate pixel-wise contextual information and focus on catching the real dental pulp region. Secondly, two efficient level set models are proposed: one is the shape constraint-based level set model for enamel and dentin segmentation, the other is the region mutual exclusion-based level set model for neighboring teeth segmentation. The proposed shape constraint term can better handle topology changes of teeth and the region mutual exclusion term can more effectively avoid intersecting segmentation. Besides, a starting slice initialization method is introduced to achieve automatic segmentation, and an accurate contour propagation strategy is developed for slice-by-slice segmentation. We set up a series of comparative experiments for evaluation. Experimental results verify that the proposed method obtains promising performance for each crown component segmentation, and outperforms state-of-the-art tooth segmentation methods in terms of accuracy. This suggests that the proposed method can be used to accurately segment the crown components for precise tooth preparation treatment. Note to Practitioners —The motivation of this work is to reduce the burden on dentists during tooth preparation treatment, which requires accurate segmentation of crown components (i.e., enamel, dentin, and pulp) from dental CT images. Existing methods only focused on the segmentation of teeth or alveolar bone. Therefore, we present a novel automatic segmentation model for the dental crown components with high accuracy. A key strength of this study is the combination of a data-driven method (deep learning) and model-driven methods (level-set), which can provide good accuracy under limited training samples. This ability is highly desirable for practitioners by saving labor-intensive, costly labeling efforts. Furthermore, our proposed method will provide tools to help reduce subjectivity and human errors, as well as streamline and expedite the clinical workflow. This will significantly facilitate tooth preparation automation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热爱学习的小罗同学呀完成签到,获得积分10
1秒前
SciGPT应助yy采纳,获得10
1秒前
淮安石河子完成签到 ,获得积分10
2秒前
曈曦完成签到 ,获得积分10
2秒前
深海鳕鱼完成签到,获得积分0
2秒前
王肖宁完成签到,获得积分10
3秒前
3秒前
4秒前
果子儿发布了新的文献求助20
4秒前
5秒前
小海棉发布了新的文献求助10
5秒前
5秒前
Fourteen完成签到 ,获得积分10
6秒前
天天快乐应助一路向北采纳,获得10
7秒前
Ccccn完成签到,获得积分10
7秒前
8秒前
9秒前
和谐饼干完成签到,获得积分20
10秒前
11秒前
AoAoo发布了新的文献求助10
12秒前
慕青应助糖宝采纳,获得10
12秒前
12秒前
打打应助郷禦采纳,获得10
13秒前
阿啵呲嘚完成签到,获得积分10
13秒前
Air云完成签到,获得积分10
13秒前
善良友安完成签到,获得积分10
14秒前
14秒前
15秒前
飘逸百褶裙完成签到,获得积分10
17秒前
ziyu发布了新的文献求助10
18秒前
azorworld6发布了新的文献求助10
18秒前
酷炫蛋挞完成签到 ,获得积分10
18秒前
18秒前
爆米花应助归海亦云采纳,获得10
18秒前
19秒前
xie完成签到,获得积分20
19秒前
谦让的鹏煊完成签到,获得积分10
19秒前
lyk2815完成签到,获得积分10
20秒前
20秒前
碧蓝的睫毛完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618349
求助须知:如何正确求助?哪些是违规求助? 4703244
关于积分的说明 14921791
捐赠科研通 4757233
什么是DOI,文献DOI怎么找? 2550059
邀请新用户注册赠送积分活动 1512904
关于科研通互助平台的介绍 1474299