Accurate and Automatic Dental Crown Components Segmentation With Multi-Scale Attention Based U-Net and Hybrid Level Set Models

分割 计算机科学 人工智能 初始化 图像分割 尺度空间分割 模式识别(心理学) 计算机视觉 程序设计语言
作者
Dongyue Li,Mingzhu Zhu,Shaoan Wang,Yaoqing Hu,Fusong Yuan,Junzhi Yu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/tase.2024.3350088
摘要

This paper presents a two-step method to automatically and accurately segment the dental crown components from CT images. Firstly, a multi-scale attention based U-Net model is proposed for pulp segmentation, which is embedded with global and local attention modules. The constructed attention modules can automatically aggregate pixel-wise contextual information and focus on catching the real dental pulp region. Secondly, two efficient level set models are proposed: one is the shape constraint-based level set model for enamel and dentin segmentation, the other is the region mutual exclusion-based level set model for neighboring teeth segmentation. The proposed shape constraint term can better handle topology changes of teeth and the region mutual exclusion term can more effectively avoid intersecting segmentation. Besides, a starting slice initialization method is introduced to achieve automatic segmentation, and an accurate contour propagation strategy is developed for slice-by-slice segmentation. We set up a series of comparative experiments for evaluation. Experimental results verify that the proposed method obtains promising performance for each crown component segmentation, and outperforms state-of-the-art tooth segmentation methods in terms of accuracy. This suggests that the proposed method can be used to accurately segment the crown components for precise tooth preparation treatment. Note to Practitioners —The motivation of this work is to reduce the burden on dentists during tooth preparation treatment, which requires accurate segmentation of crown components (i.e., enamel, dentin, and pulp) from dental CT images. Existing methods only focused on the segmentation of teeth or alveolar bone. Therefore, we present a novel automatic segmentation model for the dental crown components with high accuracy. A key strength of this study is the combination of a data-driven method (deep learning) and model-driven methods (level-set), which can provide good accuracy under limited training samples. This ability is highly desirable for practitioners by saving labor-intensive, costly labeling efforts. Furthermore, our proposed method will provide tools to help reduce subjectivity and human errors, as well as streamline and expedite the clinical workflow. This will significantly facilitate tooth preparation automation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
传奇3应助科研通管家采纳,获得10
刚刚
刚刚
lemonli完成签到,获得积分20
1秒前
1秒前
20231125完成签到,获得积分10
1秒前
1秒前
CipherSage应助DDKK采纳,获得10
1秒前
AronHUANG发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助拼搏迎梦采纳,获得20
2秒前
爆米花应助缥缈的闭月采纳,获得30
2秒前
南极野人完成签到,获得积分10
3秒前
活泼一凤发布了新的文献求助10
3秒前
苹果沛柔完成签到,获得积分10
3秒前
4秒前
所所应助鱼2333采纳,获得10
4秒前
小鱼发布了新的文献求助10
5秒前
山大王yoyo完成签到,获得积分10
5秒前
Ava应助wucl1990采纳,获得10
5秒前
5秒前
Sunrise完成签到,获得积分10
6秒前
苹果沛柔发布了新的文献求助10
6秒前
清爽的水蓝完成签到,获得积分10
6秒前
落叶完成签到,获得积分10
7秒前
LLL20240701发布了新的文献求助30
7秒前
wanci应助ciooli采纳,获得10
8秒前
小二郎应助义气的海瑶采纳,获得10
8秒前
丘比特应助如意书包采纳,获得10
8秒前
Ridley发布了新的文献求助10
8秒前
9秒前
隐形曼青应助lw采纳,获得10
9秒前
Lucas应助Serenity采纳,获得10
10秒前
无敌小帅发布了新的文献求助30
10秒前
香蕉觅云应助lvsehx采纳,获得10
10秒前
对苏完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620