Distributed Composite Learning Adaptive Fault-Tolerant Control for Multiple Marine Vehicles With Event-Triggered Communication

跟踪误差 控制理论(社会学) 计算机科学 容错 人工神经网络 有界函数 自适应控制 Lyapunov稳定性 断层(地质) 事件(粒子物理) 控制工程 控制(管理) 工程类 分布式计算 人工智能 数学 地质学 数学分析 地震学 物理 量子力学
作者
Shengjia Chu,Ning Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5664-5673 被引量:2
标识
DOI:10.1109/tits.2023.3340746
摘要

The paper investigates the distributed cooperative control problem for multiple marine vehicles in the presence of sensor faults and limited communication networks. The composite learning adaptive fault-tolerant control algorithm is designed via the novel prediction error to tackle the perturbation incurred by possible sensor faults. To the best of the authors' knowledge, the application of composite adaptive control to deal with sensor faults is the first attempt for marine vehicle systems. Besides, composite neural networks (NNs) are constructed to reconstruct model uncertainties. Different from the existing schemes, a concise event-triggered communication mechanism is proposed to optimize inter-vehicle communication. In particular, the time-varying parameter is introduced to dynamically adjust the event-triggered virtual control law according to the feedback of real-time actual tracking error, thereby enhancing control accuracy. Only the attitude information between the multiple vehicle members is aperiodically exchanged at sampling instants, saving communication resources. Based on the Lyapunov criterion, the semi-global uniformly ultimately bounded (SGUUB) stability of the closed-loop system can be guaranteed covering both trigger instants and continuous intervals. Two experiment results are illustrated to verify the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
搞怪的宝贝完成签到,获得积分10
2秒前
3秒前
诚心新波完成签到 ,获得积分10
3秒前
5秒前
斯文败类应助白水采纳,获得10
5秒前
5秒前
雪糕发布了新的文献求助10
6秒前
7秒前
量子星尘发布了新的文献求助50
7秒前
风铃完成签到,获得积分10
7秒前
诺一44发布了新的文献求助10
7秒前
赘婿应助锦鲤采纳,获得10
8秒前
8秒前
甜蜜的山柏完成签到,获得积分10
8秒前
所所应助吴海采纳,获得10
11秒前
11秒前
单于天宇发布了新的文献求助10
12秒前
12秒前
Adzuki0812发布了新的文献求助10
14秒前
胡燕发布了新的文献求助10
15秒前
18秒前
18秒前
18秒前
19秒前
20秒前
20秒前
20秒前
20秒前
CipherSage应助花角鹿采纳,获得10
22秒前
22秒前
23秒前
脑洞疼应助wfrg采纳,获得10
23秒前
爱咋咋地发布了新的文献求助10
24秒前
11发布了新的文献求助50
24秒前
锦鲤完成签到,获得积分10
24秒前
YY发布了新的文献求助10
25秒前
25秒前
醉熏的百合完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
International Encyclopedia of Business Management 1000
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4934467
求助须知:如何正确求助?哪些是违规求助? 4202316
关于积分的说明 13056932
捐赠科研通 3976674
什么是DOI,文献DOI怎么找? 2179085
邀请新用户注册赠送积分活动 1195395
关于科研通互助平台的介绍 1106716