Exploring the Close-Range Detection of UAV-Based Images on Pine Wilt Disease by an Improved Deep Learning Method

计算机科学 枯萎病 棱锥(几何) 航程(航空) 人工智能 特征(语言学) 目标检测 推论 集合(抽象数据类型) 数据挖掘 机器学习 模式识别(心理学) 数学 工程类 语言学 哲学 植物 几何学 生物 程序设计语言 航空航天工程
作者
Xinquan Ye,Jie Pan,Gaosheng Liu,Fan Shao
出处
期刊:Plant phenomics [American Association for the Advancement of Science]
卷期号:5 被引量:6
标识
DOI:10.34133/plantphenomics.0129
摘要

Pine wilt disease (PWD) is a significantly destructive forest disease. To control the spread of PWD, an urgent need exists for a real-time and efficient method to detect infected trees. However, existing object detection models have often faced challenges in balancing lightweight design and accuracy, particularly in complex mixed forests. To address this, an improvement was made to the YOLOv5s (You Only Look Once version 5s) algorithm, resulting in a real-time and efficient model named PWD-YOLO. First, a lightweight backbone was constructed, composed of multiple connected RepVGG Blocks, significantly enhancing the model's inference speed. Second, a C2fCA module was designed to incorporate rich gradient information flow and concentrate on key features, thereby preserving more detailed characteristics of PWD-infected trees. In addition, the GSConv network was utilized instead of conventional convolutions to reduce network complexity. Last, the Bidirectional Feature Pyramid Network strategy was used to enhance the propagation and sharing of multiscale features. The results demonstrate that on a self-built dataset, PWD-YOLO surpasses existing object detection models with respective measurements of model size (2.7 MB), computational complexity (3.5 GFLOPs), parameter volume (1.09 MB), and speed (98.0 frames/s). The Precision, Recall, and F1-score on the test set are 92.5%, 95.3%, and 93.9%, respectively, which confirms the effectiveness of the proposed method. It provides reliable technical support for daily monitoring and clearing of infected trees by forestry management departments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tinysweet完成签到,获得积分10
1秒前
聪慧松思完成签到 ,获得积分10
2秒前
fwi小白发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
大恩区完成签到,获得积分10
4秒前
NexusExplorer应助阳光易真采纳,获得10
6秒前
San_Fu发布了新的文献求助10
7秒前
7秒前
7秒前
年糕炸小羊发布了新的文献求助150
8秒前
9秒前
蝴蝶发布了新的文献求助10
10秒前
wanci应助大鲨鱼采纳,获得10
10秒前
11秒前
六尺巷完成签到,获得积分10
12秒前
随机游动完成签到,获得积分10
12秒前
clearboi完成签到 ,获得积分10
12秒前
A梦发布了新的文献求助10
12秒前
LL发布了新的文献求助10
13秒前
wll发布了新的文献求助10
15秒前
梅思双完成签到,获得积分10
16秒前
18秒前
bkagyin应助LL采纳,获得10
19秒前
李爱国应助lwj007采纳,获得10
20秒前
21秒前
快乐的谷蓝完成签到,获得积分10
22秒前
善学以致用应助不知道采纳,获得10
22秒前
我是幸运大王完成签到,获得积分10
22秒前
刘丽梅发布了新的文献求助10
23秒前
fwi小白完成签到,获得积分10
23秒前
玩命的毛衣完成签到 ,获得积分10
23秒前
思源应助热情的夏采纳,获得10
24秒前
科研通AI5应助123123采纳,获得10
24秒前
25秒前
26秒前
枷锁发布了新的文献求助10
26秒前
儒雅的如松完成签到 ,获得积分10
26秒前
隐形曼青应助HJJHJH采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748885
求助须知:如何正确求助?哪些是违规求助? 3291961
关于积分的说明 10075259
捐赠科研通 3007650
什么是DOI,文献DOI怎么找? 1651753
邀请新用户注册赠送积分活动 786700
科研通“疑难数据库(出版商)”最低求助积分说明 751826