Compressive-sensing model reconstruction of nonlinear systems with multiple attractors

吸引子 压缩传感 非线性系统 可解释性 算法 动力系统理论 计算机科学 理论(学习稳定性) 数学 数学优化 人工智能 机器学习 数学分析 物理 量子力学
作者
Xiuting Sun,Jiawei Qian,Jian Xu
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:265: 108905-108905 被引量:7
标识
DOI:10.1016/j.ijmecsci.2023.108905
摘要

In this study, facing the challenges on model reconstruction for multi-attractor nonlinear systems, the data generation and sparse regression processes in sparse identification method are generalized, referring to compressive sensing, to obtain the accurate description under the least volume of test data set. In the data generation process, we introduce compressive sensing process by an arbitrary initial condition and arbitrary perturbations applied on time domain to transcend the local attractors. In the sparse regression process, the optimum sparse parameter is obtained by bi-optimization criterion according to accuracy and interpretability. Then, accuracy criterion is proposed, and when it discovers the unperceived dynamic behaviors, more dynamic data could be recorded and added into the modeling reconstruction data set by perturbations. It requires less dynamic signals by dynamical compressive sensing with perturbations compared to the previous method with uniform point fetching on the state space. Several numerical cases and two experiments of nonlinear systems with different kinds of multi-attractors are proposed to illustrate the effectiveness of the reconstruction method. In experiment, for the dynamic systems with multi-steady states phenomenon, the most obvious problem is the calibration of the equilibrium at the symmetrical configuration, which cannot be obtained for local dynamic behaviors due to its instability. In applications, this generalized modeling reconstruction method can continuously and compressively sense the dynamic behaviors and the stability of multiple attractors to figure out the accurate governing equations under a small quantity of data. In summary, different from the previous sparse regression algorithm for nonlinear systems with multiple attractors under huge amount of data set assembled offline filling a large enough state space, the proposed model reconstruction process can intelligently sense the dynamic behaviors and give the accurate prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助murry123采纳,获得10
1秒前
ANG完成签到 ,获得积分10
1秒前
2秒前
李嘉欣发布了新的文献求助10
3秒前
3秒前
lascqy完成签到 ,获得积分10
4秒前
wbh发布了新的文献求助10
5秒前
JamesPei应助咚咚咚采纳,获得30
6秒前
小熊熊完成签到,获得积分10
7秒前
Tessa完成签到,获得积分10
7秒前
王心耳完成签到,获得积分10
8秒前
扁舟灬完成签到,获得积分10
8秒前
周婷发布了新的文献求助10
8秒前
8秒前
puff关注了科研通微信公众号
9秒前
9秒前
11秒前
稳重岩完成签到 ,获得积分10
13秒前
loski发布了新的文献求助10
14秒前
步一发布了新的文献求助10
14秒前
15秒前
15秒前
hanleiharry1发布了新的文献求助10
15秒前
15秒前
murry123发布了新的文献求助10
16秒前
痴情的寒云完成签到 ,获得积分10
16秒前
CAOHOU应助张wx_100采纳,获得10
17秒前
18秒前
ppg123应助NightGlow采纳,获得10
19秒前
19秒前
20秒前
emmm发布了新的文献求助10
21秒前
顾矜应助wbh采纳,获得10
22秒前
无辜的夏山完成签到,获得积分10
22秒前
1142722发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
24秒前
murry123完成签到,获得积分10
25秒前
齐天大圣关注了科研通微信公众号
26秒前
puff发布了新的文献求助10
27秒前
27秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989390
求助须知:如何正确求助?哪些是违规求助? 3531487
关于积分的说明 11254109
捐赠科研通 3270153
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809174