Compressive-sensing model reconstruction of nonlinear systems with multiple attractors

吸引子 压缩传感 非线性系统 可解释性 算法 动力系统理论 计算机科学 理论(学习稳定性) 数学 数学优化 人工智能 机器学习 数学分析 物理 量子力学
作者
Xiuting Sun,Jiawei Qian,Jian Xu
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:265: 108905-108905 被引量:7
标识
DOI:10.1016/j.ijmecsci.2023.108905
摘要

In this study, facing the challenges on model reconstruction for multi-attractor nonlinear systems, the data generation and sparse regression processes in sparse identification method are generalized, referring to compressive sensing, to obtain the accurate description under the least volume of test data set. In the data generation process, we introduce compressive sensing process by an arbitrary initial condition and arbitrary perturbations applied on time domain to transcend the local attractors. In the sparse regression process, the optimum sparse parameter is obtained by bi-optimization criterion according to accuracy and interpretability. Then, accuracy criterion is proposed, and when it discovers the unperceived dynamic behaviors, more dynamic data could be recorded and added into the modeling reconstruction data set by perturbations. It requires less dynamic signals by dynamical compressive sensing with perturbations compared to the previous method with uniform point fetching on the state space. Several numerical cases and two experiments of nonlinear systems with different kinds of multi-attractors are proposed to illustrate the effectiveness of the reconstruction method. In experiment, for the dynamic systems with multi-steady states phenomenon, the most obvious problem is the calibration of the equilibrium at the symmetrical configuration, which cannot be obtained for local dynamic behaviors due to its instability. In applications, this generalized modeling reconstruction method can continuously and compressively sense the dynamic behaviors and the stability of multiple attractors to figure out the accurate governing equations under a small quantity of data. In summary, different from the previous sparse regression algorithm for nonlinear systems with multiple attractors under huge amount of data set assembled offline filling a large enough state space, the proposed model reconstruction process can intelligently sense the dynamic behaviors and give the accurate prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大橙子发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
jenny完成签到,获得积分10
3秒前
祁乐安完成签到,获得积分10
4秒前
naiyouqiu1989完成签到,获得积分10
5秒前
zjhzslq发布了新的文献求助10
6秒前
baoxiaozhai完成签到 ,获得积分10
7秒前
fy完成签到,获得积分10
8秒前
强公子完成签到,获得积分10
9秒前
15秒前
song完成签到 ,获得积分10
16秒前
怡然小蚂蚁完成签到 ,获得积分10
16秒前
小橙子完成签到,获得积分10
18秒前
SciGPT应助滴答采纳,获得10
18秒前
大气白翠完成签到,获得积分10
19秒前
确幸完成签到,获得积分10
19秒前
zjhzslq完成签到,获得积分10
19秒前
xdc发布了新的文献求助10
20秒前
ommphey完成签到 ,获得积分10
20秒前
牛哥还是强啊完成签到 ,获得积分10
21秒前
科研通AI2S应助屈岂愈采纳,获得10
22秒前
好名字完成签到,获得积分10
23秒前
kongzhiqiqi完成签到,获得积分10
24秒前
滴答完成签到 ,获得积分10
24秒前
浅浅殇完成签到,获得积分10
28秒前
29秒前
31秒前
滴答发布了新的文献求助10
34秒前
高高的天亦完成签到 ,获得积分10
35秒前
星空完成签到 ,获得积分10
36秒前
文艺的青旋完成签到 ,获得积分10
36秒前
青黛完成签到 ,获得积分10
43秒前
大橙子发布了新的文献求助10
47秒前
领导范儿应助科研通管家采纳,获得10
48秒前
量子星尘发布了新的文献求助10
52秒前
明钟达完成签到 ,获得积分10
1分钟前
byyyy完成签到,获得积分10
1分钟前
高高的哈密瓜完成签到 ,获得积分10
1分钟前
Rondab应助橙汁采纳,获得10
1分钟前
读书的时候完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038128
求助须知:如何正确求助?哪些是违规求助? 3575831
关于积分的说明 11373827
捐赠科研通 3305610
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022