Compressive strength, thermal reflectivity and energy saving of nano-TiO2-based inorganic decorative panels

材料科学 复合材料 抗压强度 发射率 热的 粒子(生态学) 光学 海洋学 物理 地质学 气象学
作者
Rui Zhang,Gongxun Wang,Hassana Tahir Maude,Bo Huang,Fucai Liu,Mingqiao Zhu
出处
期刊:Case Studies in Construction Materials [Elsevier BV]
卷期号:20: e03048-e03048 被引量:1
标识
DOI:10.1016/j.cscm.2024.e03048
摘要

The utilization of thermal reflective materials on the building surface is one of the most promising methods for energy-saving in tropical and subtropical regions. In this work, nano TiO2 (NT) is used to enhance the mechanical properties and thermal reflectance of inorganic decorative panels, which are widely used for building exterior walls in China. The obtained results show that NT can modify the pore size distribution of the decorative panels and reduce the presence of macropores, and the compressive strength of the decorative panels with 2% NT increased by 4.78%. The thermal reflective proper-ties of the decorative panels initially increased and then decreased with increasing NT content and particle size. Notably, the panels made of 6% NT with a particle size of 100 nm exhibited higher thermal reflectivity, resulting in a surface temperature decrease of 3.9°C compared to the reference sample. Furthermore, compounding different particle sizes NT is employed to produce the decorative panels, and about a 4.5 °C decrease can be observed in this study. Mid- and far-infrared absorption spectroscopy results show that the thermal emissivity is improved in the mid- and far-infrared region of 2.5–25 μm when 100-nm and 25-nm NT were compounded at a weight ratio of 1:1. Additionally, to further evaluate the energy-saving of the decorative panels, the Designer's Simulation Toolkit is employed, which demonstrates that the thermal reflective decorative panels with 6% NT can save 7.19% of building air-conditioning energy consumption and reduce the indoor temperature by 1.5°C.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃狼的小红帽完成签到 ,获得积分10
刚刚
刚刚
彭于晏应助卫思风采纳,获得30
刚刚
huhu发布了新的文献求助10
刚刚
刚刚
yozi发布了新的文献求助10
1秒前
共享精神应助云墨采纳,获得10
1秒前
gexiaoyang完成签到 ,获得积分10
1秒前
一生平安应助猴猴采纳,获得30
1秒前
Linco发布了新的文献求助10
1秒前
可爱的函函应助Mae采纳,获得30
1秒前
大方颦完成签到 ,获得积分10
2秒前
3秒前
3秒前
镓氧锌钇铀应助顺心绮兰采纳,获得10
3秒前
小k完成签到,获得积分20
3秒前
LY发布了新的文献求助10
3秒前
3秒前
JamesPei应助风中的哈密瓜采纳,获得10
4秒前
无心发布了新的文献求助10
6秒前
6秒前
深情安青应助Fjun采纳,获得10
6秒前
6秒前
Lee发布了新的文献求助10
7秒前
jia发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
zhaowei完成签到,获得积分10
8秒前
9秒前
呼呼完成签到,获得积分10
9秒前
秦苏箐完成签到 ,获得积分10
9秒前
FGG发布了新的文献求助10
9秒前
10秒前
10秒前
典雅飞飞发布了新的文献求助10
10秒前
zhaowei发布了新的文献求助10
11秒前
拈花一笑完成签到,获得积分20
11秒前
shi hui发布了新的文献求助10
11秒前
搜集达人应助zzy采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193007
求助须知:如何正确求助?哪些是违规求助? 4375799
关于积分的说明 13626640
捐赠科研通 4230400
什么是DOI,文献DOI怎么找? 2320393
邀请新用户注册赠送积分活动 1318798
关于科研通互助平台的介绍 1269105