p/s-orbital hybridization induced by Mg-doping to active Na sites in Na2FePO4F cathode for long-life and high-rate sodium-ion batteries

材料科学 兴奋剂 阴极 离子 电化学 原子轨道 电子结构 电极 纳米技术 电子 物理化学 光电子学 计算化学 有机化学 物理 化学 量子力学
作者
Yan Liu,Shuying Li,Zhen‐Yi Gu,Yong‐Li Heng,Hong‐Yan Lü,Jialin Yang,Miao Du,Xiaotong Wang,Jin‐Zhi Guo,Feilong Dong,Kai Li,Xing‐Long Wu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:68: 103319-103319 被引量:5
标识
DOI:10.1016/j.ensm.2024.103319
摘要

The iron-based fluorophosphate Na2FePO4F (NFPF) is considered as a potential cathode for sodium-ion batteries due to the low-cost, non-toxicity and appropriate working voltage. However, the inferior intrinsic electronic conductivity and the restrained active Na sites bring the limits for full realization of electrochemical properties. Herein, Mg2+ with d0 orbital was introduced in FeO4F2 structure, aimed at activating the Na+ at Na1 site and enhancing the electronic conductivity. Different from the 3d transition metal (TM) elements that form 3d-O2p orbital interactions in the FeO4F2 structure, the Mg with d° contributes p and s orbitals mainly in Mg-O bonds, which corresponds to more stable orbital interaction and lattice structure. The electron distribution of bridge O due to the Mg-doping leads to the wooden barrel effect near the Mg site, thus activating Na+ at Na1 site by lowering the energy barrier of Na+ migration from Na1 to Na2 site. Hence, the obtained NFMPF electrode delivers high specific capacity (121.4 vs. 108.7 mAh g−1 at 0.1 C) and better cycling stability (73.8% vs. 54.2 % after 1000 cycles at 20 C). Overall, regulating the electronic structure and activating Na+ at inactive site is the key to break the bottleneck of low activity, which can be an effective strategy to design cathode materials with excellent electrochemical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白石杏完成签到,获得积分10
1秒前
ll200207完成签到,获得积分10
2秒前
凶狠的乐巧完成签到,获得积分10
2秒前
Lin发布了新的文献求助10
3秒前
三七发布了新的文献求助10
3秒前
3秒前
鸣隐发布了新的文献求助10
3秒前
4秒前
4秒前
软豆皮完成签到,获得积分10
4秒前
lan完成签到,获得积分10
5秒前
英姑应助松松果采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
chillin发布了新的文献求助10
7秒前
zhui发布了新的文献求助10
7秒前
薪炭林完成签到,获得积分10
8秒前
Rrr发布了新的文献求助10
8秒前
8秒前
SCISSH完成签到 ,获得积分10
8秒前
FEI发布了新的文献求助10
9秒前
科研通AI5应助奔奔采纳,获得10
10秒前
星辰大海应助八八采纳,获得20
10秒前
gaga发布了新的文献求助10
10秒前
木子加y发布了新的文献求助10
10秒前
大大泡泡完成签到,获得积分10
11秒前
852应助zhui采纳,获得10
12秒前
芒果发布了新的文献求助10
12秒前
13秒前
前百年253完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
xiaoguai完成签到 ,获得积分10
15秒前
甜蜜晓绿发布了新的文献求助10
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794