亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bidirectional Mapping Perception-enhanced Cycle-consistent Generative Adversarial Network for Super-resolution of Brain MRI images

人工智能 体素 计算机科学 模式识别(心理学) 均方误差 相似性(几何) 生成对抗网络 图像分辨率 生成模型 计算机视觉 图像(数学) 数学 生成语法 统计
作者
Jie Sun,Juanjuan Jiang,Ronghua Ling,Li Wang,Jiehui Jiang,Min Wang
标识
DOI:10.1109/embc40787.2023.10340042
摘要

As an effective tool for visualizing neurodegeneration, high-resolution structural magnetism facilitates quantitative image analysis and clinical applications. Super-resolution reconstruction technology allows to improve the resolution of images without upgrading the scanning hardware. However, existing super-resolution techniques relied on paired image data sets and lacked further quantitative analysis of the generated images. In this study, we proposed a semi-supervised generative adversarial network (GAN) model for super-resolution of brain MRI, and the synthetic images were evaluated using various quantitative measures. This model adopted the cycle-consistency structure to allow for a mixture of unpaired data for training. Perceptual loss was further introduced into the model to preserve detailed texture features at high frequencies. 363 subjects with both high-resolution (HR) and low-resolution (LR) scans and 217 subjects with HR scans only were used for model derivation, training, and validation. We extracted multiple voxel-based and surface-based morphological features of the synthetic and real 3D HR images for comparison. We further evaluated the synthetic images in the differential diagnosis of diseases. Our model achieved superior mean absolute error (0.049±0.021), mean squared error (0.0059±0.0043), peak signal-to-noise ratio (29.41±3.71), structural similarity index measure (0.914±0.048). Eight morphological metrics, both voxel-based and surface-based, showed significant agreement (P<0.0001). The gap of accuracy in disease diagnosis between synthetic and real HR images was within 5% and significantly outperformed the LR images. Our proposed model enables the reconstruction of HR MRI and could be used accurately for image quantification.Clinical relevance— Quantitative evaluation of the synthetic high-resolution images was used to determine whether the synthetic images have sufficient realism and diversity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI6应助倩倩子采纳,获得10
2秒前
苹果王子6699完成签到 ,获得积分10
2秒前
2秒前
王彤彤完成签到,获得积分10
5秒前
打打应助Moo5_zzZ采纳,获得30
9秒前
羽毛完成签到,获得积分20
9秒前
慕青应助zjq采纳,获得10
10秒前
羽毛发布了新的文献求助10
12秒前
小张完成签到 ,获得积分10
13秒前
李健应助愉快的平松采纳,获得20
15秒前
15秒前
无猫人士想养猫完成签到,获得积分10
16秒前
秦明完成签到 ,获得积分10
18秒前
liu完成签到 ,获得积分10
18秒前
科目三应助羽毛采纳,获得10
19秒前
zjq发布了新的文献求助10
20秒前
25秒前
ddd完成签到 ,获得积分10
27秒前
Moo5_zzZ发布了新的文献求助30
29秒前
talent发布了新的文献求助10
35秒前
Ava应助Moo5_zzZ采纳,获得30
36秒前
圈圈完成签到 ,获得积分10
39秒前
田様应助兴尽晚回舟采纳,获得10
47秒前
shhoing应助科研通管家采纳,获得10
48秒前
FashionBoy应助科研通管家采纳,获得10
48秒前
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
Owen应助科研通管家采纳,获得10
49秒前
49秒前
华仔应助ttsx采纳,获得10
57秒前
1分钟前
从容冰淇淋完成签到,获得积分10
1分钟前
1分钟前
Moo5_zzZ发布了新的文献求助30
1分钟前
1分钟前
ttsx发布了新的文献求助10
1分钟前
1分钟前
李爱国应助小张采纳,获得10
1分钟前
汉堡包应助Moo5_zzZ采纳,获得30
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5543077
求助须知:如何正确求助?哪些是违规求助? 4629202
关于积分的说明 14610993
捐赠科研通 4570495
什么是DOI,文献DOI怎么找? 2505794
邀请新用户注册赠送积分活动 1483074
关于科研通互助平台的介绍 1454374