Bidirectional Mapping Perception-enhanced Cycle-consistent Generative Adversarial Network for Super-resolution of Brain MRI images

人工智能 体素 计算机科学 模式识别(心理学) 均方误差 相似性(几何) 生成对抗网络 图像分辨率 生成模型 计算机视觉 图像(数学) 数学 生成语法 统计
作者
Jie Sun,Juanjuan Jiang,Ronghua Ling,Li Wang,Jiehui Jiang,Min Wang
标识
DOI:10.1109/embc40787.2023.10340042
摘要

As an effective tool for visualizing neurodegeneration, high-resolution structural magnetism facilitates quantitative image analysis and clinical applications. Super-resolution reconstruction technology allows to improve the resolution of images without upgrading the scanning hardware. However, existing super-resolution techniques relied on paired image data sets and lacked further quantitative analysis of the generated images. In this study, we proposed a semi-supervised generative adversarial network (GAN) model for super-resolution of brain MRI, and the synthetic images were evaluated using various quantitative measures. This model adopted the cycle-consistency structure to allow for a mixture of unpaired data for training. Perceptual loss was further introduced into the model to preserve detailed texture features at high frequencies. 363 subjects with both high-resolution (HR) and low-resolution (LR) scans and 217 subjects with HR scans only were used for model derivation, training, and validation. We extracted multiple voxel-based and surface-based morphological features of the synthetic and real 3D HR images for comparison. We further evaluated the synthetic images in the differential diagnosis of diseases. Our model achieved superior mean absolute error (0.049±0.021), mean squared error (0.0059±0.0043), peak signal-to-noise ratio (29.41±3.71), structural similarity index measure (0.914±0.048). Eight morphological metrics, both voxel-based and surface-based, showed significant agreement (P<0.0001). The gap of accuracy in disease diagnosis between synthetic and real HR images was within 5% and significantly outperformed the LR images. Our proposed model enables the reconstruction of HR MRI and could be used accurately for image quantification.Clinical relevance— Quantitative evaluation of the synthetic high-resolution images was used to determine whether the synthetic images have sufficient realism and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kin_L完成签到,获得积分10
1秒前
1秒前
顺其自然完成签到 ,获得积分10
2秒前
3秒前
3秒前
852应助Kin_L采纳,获得10
4秒前
传奇3应助momo采纳,获得10
4秒前
szk完成签到,获得积分10
5秒前
细心健柏完成签到 ,获得积分10
6秒前
十三发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
zsk1122发布了新的文献求助10
9秒前
happyccch发布了新的文献求助10
9秒前
10秒前
huiyang sha发布了新的文献求助10
12秒前
yao完成签到,获得积分10
13秒前
弦弦弦发布了新的文献求助10
13秒前
夕子爱科研完成签到,获得积分10
13秒前
落寞臻完成签到,获得积分10
14秒前
14秒前
爆米花完成签到,获得积分10
15秒前
赤恩完成签到,获得积分10
15秒前
15秒前
哈哈哈哈发布了新的文献求助10
15秒前
Ann完成签到,获得积分10
16秒前
搜集达人应助水龙吟采纳,获得10
18秒前
18秒前
英俊的铭应助香蕉梨愁采纳,获得10
19秒前
20秒前
落后的又蓝完成签到,获得积分10
20秒前
胥钦凤发布了新的文献求助10
20秒前
万能图书馆应助弦弦弦采纳,获得10
21秒前
22秒前
23秒前
23秒前
小胡发布了新的文献求助10
24秒前
26秒前
chen完成签到,获得积分10
26秒前
无情向梦发布了新的文献求助10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958021
求助须知:如何正确求助?哪些是违规求助? 3504166
关于积分的说明 11117289
捐赠科研通 3235515
什么是DOI,文献DOI怎么找? 1788289
邀请新用户注册赠送积分活动 871204
科研通“疑难数据库(出版商)”最低求助积分说明 802511