Bidirectional Mapping Perception-enhanced Cycle-consistent Generative Adversarial Network for Super-resolution of Brain MRI images

人工智能 体素 计算机科学 模式识别(心理学) 均方误差 相似性(几何) 生成对抗网络 图像分辨率 生成模型 计算机视觉 图像(数学) 数学 生成语法 统计
作者
Jie Sun,Juanjuan Jiang,Ronghua Ling,Li Wang,Jiehui Jiang,Min Wang
标识
DOI:10.1109/embc40787.2023.10340042
摘要

As an effective tool for visualizing neurodegeneration, high-resolution structural magnetism facilitates quantitative image analysis and clinical applications. Super-resolution reconstruction technology allows to improve the resolution of images without upgrading the scanning hardware. However, existing super-resolution techniques relied on paired image data sets and lacked further quantitative analysis of the generated images. In this study, we proposed a semi-supervised generative adversarial network (GAN) model for super-resolution of brain MRI, and the synthetic images were evaluated using various quantitative measures. This model adopted the cycle-consistency structure to allow for a mixture of unpaired data for training. Perceptual loss was further introduced into the model to preserve detailed texture features at high frequencies. 363 subjects with both high-resolution (HR) and low-resolution (LR) scans and 217 subjects with HR scans only were used for model derivation, training, and validation. We extracted multiple voxel-based and surface-based morphological features of the synthetic and real 3D HR images for comparison. We further evaluated the synthetic images in the differential diagnosis of diseases. Our model achieved superior mean absolute error (0.049±0.021), mean squared error (0.0059±0.0043), peak signal-to-noise ratio (29.41±3.71), structural similarity index measure (0.914±0.048). Eight morphological metrics, both voxel-based and surface-based, showed significant agreement (P<0.0001). The gap of accuracy in disease diagnosis between synthetic and real HR images was within 5% and significantly outperformed the LR images. Our proposed model enables the reconstruction of HR MRI and could be used accurately for image quantification.Clinical relevance— Quantitative evaluation of the synthetic high-resolution images was used to determine whether the synthetic images have sufficient realism and diversity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大大怪z发布了新的文献求助10
刚刚
刚刚
猪猪完成签到,获得积分10
刚刚
1秒前
1秒前
onethree完成签到 ,获得积分10
1秒前
研友_LOK59L发布了新的文献求助10
1秒前
11完成签到,获得积分10
2秒前
巅峰囚冰完成签到,获得积分10
2秒前
3秒前
3秒前
qwer发布了新的文献求助10
3秒前
3秒前
失眠的向日葵完成签到 ,获得积分10
4秒前
白开水完成签到,获得积分10
4秒前
方兴未艾完成签到 ,获得积分10
4秒前
Able阿拉基完成签到,获得积分20
4秒前
zhanglin完成签到,获得积分10
4秒前
5秒前
zhangkaixin完成签到,获得积分10
5秒前
花椒泡茶完成签到,获得积分10
5秒前
6秒前
满增明发布了新的文献求助10
7秒前
7秒前
KT2440发布了新的文献求助10
7秒前
日升月发布了新的文献求助10
8秒前
大大怪z完成签到,获得积分20
8秒前
8秒前
8秒前
aniver完成签到 ,获得积分10
9秒前
emile发布了新的文献求助10
9秒前
研友_LOK59L完成签到,获得积分10
10秒前
Vivi发布了新的文献求助10
10秒前
10秒前
7十七发布了新的文献求助10
10秒前
10秒前
背后飞松完成签到 ,获得积分10
11秒前
小盘子完成签到,获得积分10
11秒前
hyekyo完成签到,获得积分10
11秒前
纳米纤维素完成签到,获得积分10
12秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257371
求助须知:如何正确求助?哪些是违规求助? 2899272
关于积分的说明 8304996
捐赠科研通 2568569
什么是DOI,文献DOI怎么找? 1395172
科研通“疑难数据库(出版商)”最低求助积分说明 652955
邀请新用户注册赠送积分活动 630727