硫族元素
过渡金属
材料科学
半导体
空位缺陷
载流子
Atom(片上系统)
载流子散射
晶体缺陷
化学物理
电子迁移率
声子
散射
凝聚态物理
光电子学
化学
结晶学
物理
计算机科学
催化作用
光学
生物化学
嵌入式系统
作者
Zhongcan Xiao,Rongjing Guo,Chenmu Zhang,Yuanyue Liu
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-03-06
卷期号:18 (11): 8511-8516
被引量:1
标识
DOI:10.1021/acsnano.4c01033
摘要
2D transition metal dichalcogenide (MX2) semiconductors are promising candidates for electronic and optoelectronic applications. However, they have relatively low charge carrier mobility at room temperature. Defects are important scattering sources, while their quantitative roles remain unclear. Here we employ first-principles methods to accurately calculate the scatterings by different types of defects (chalcogen vacancies, antisites, and oxygen substitutes) and the resulting carrier mobilities for various MX2 (M = Mo/W and X = S/Se). We find that for the same X, WX2 always has a higher mobility than MoX2, regardless of defect type and carrier type. Further analyses attribute this to the universally weaker electron-defect coupling in WX2. Moreover, we find filling the chalcogen vacancy with O always improves the mobility, while filling by a metal atom decreases the mobility except for WSe2. Finally, we identify the critical defect concentrations where the defect- and phonon-limited mobilities cross, providing guidelines for experimental optimization.
科研通智能强力驱动
Strongly Powered by AbleSci AI