Development of a machine learning-based model for predicting individual responses to antihypertensive treatments

医学 血脂异常 血压 体质指数 腰围 糖尿病 内科学 抗高血压药 人口 物理疗法 疾病 环境卫生 内分泌学
作者
Jiayi Yi,Lili Wang,Jiali Song,Yanchen Liu,Shiyuan Liu,Haibo Zhang,Jiapeng Lu,Xin Zheng
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
标识
DOI:10.1016/j.numecd.2024.02.014
摘要

Background and Aims Personalized antihypertensive drug selection is essential for optimizing hypertension management. The study aimed to develop a machine learning (ML) model to predict individual blood pressure (BP) responses to different antihypertensive medications. Methods and Results We used data from a pragmatic, cluster-randomized trial on hypertension management in China. Each patient's multiple visit records were included, and two consecutive visits were paired as the index and subsequent visits. The least absolute shrinkage and selection operator method was used to select index visit variables for predicting subsequent BP. The dataset was randomly divided into training and test sets in a 7:3 ratio. Model performance was evaluated using mean absolute error (MAE) and R-square in the test set. A total of 19013 hypertension management visit records (6282 patients) were included. The mean age of the study population was 63.9 years, and 2657 (42.3%) were females. A total of 12 phenotypical features (age, sex, smoking within seven days, body mass index, waist circumference, index visit systolic BP, diastolic BP, heart rate, comorbidities of diabetes, dyslipidemia, coronary heart disease, and stroke), together with currently taking any prescribed antihypertensive medication regimens and visits time interval were selected to build the model. The Extreme Gradient Boost model performed best among all candidate algorithms, with an MAE of 8.57 mmHg and an R2 = 0.28 in the test set. Conclusion The ML techniques exhibit significant potential for predicting individual responses to antihypertensive treatments, thereby aiding clinicians in achieving optimal BP control safely and efficiently. Trial Registration ClinicalTrials.gov, NCT03636334. Registered 3 July 2018, https://clinicaltrials.gov/study/NCT03636334.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
古铜完成签到 ,获得积分10
刚刚
Coatings发布了新的文献求助10
1秒前
dragonhmw完成签到 ,获得积分10
3秒前
5秒前
luo完成签到,获得积分10
6秒前
Anthocyanidin完成签到,获得积分10
7秒前
杜巧巧完成签到,获得积分10
8秒前
情怀应助好好好采纳,获得10
9秒前
窝窝头发布了新的文献求助10
10秒前
11秒前
Vesper完成签到,获得积分10
11秒前
12秒前
沙子完成签到 ,获得积分0
13秒前
13秒前
14秒前
阎听筠完成签到 ,获得积分10
16秒前
英俊的铭应助MQueen采纳,获得10
18秒前
瓦力文完成签到,获得积分10
18秒前
自然的笙发布了新的文献求助10
19秒前
竹筏过海完成签到,获得积分0
29秒前
希勤完成签到,获得积分10
34秒前
control完成签到,获得积分10
34秒前
35秒前
35秒前
君临完成签到,获得积分10
38秒前
切奇莉亚发布了新的文献求助10
38秒前
容与完成签到 ,获得积分10
41秒前
bkagyin应助wangayting采纳,获得30
41秒前
春江完成签到 ,获得积分10
42秒前
42秒前
千冬完成签到,获得积分10
43秒前
Chenzhs完成签到,获得积分10
44秒前
会飞的鱼完成签到,获得积分10
44秒前
xsx完成签到,获得积分10
48秒前
49秒前
49秒前
Accepted应助炙热的河马采纳,获得10
52秒前
52秒前
负责吃饭完成签到,获得积分10
53秒前
Kurimi发布了新的文献求助10
53秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139837
求助须知:如何正确求助?哪些是违规求助? 2790697
关于积分的说明 7796331
捐赠科研通 2447121
什么是DOI,文献DOI怎么找? 1301574
科研通“疑难数据库(出版商)”最低求助积分说明 626305
版权声明 601185