Development of a machine learning-based model for predicting individual responses to antihypertensive treatments

医学 血脂异常 血压 体质指数 腰围 糖尿病 内科学 抗高血压药 人口 物理疗法 疾病 环境卫生 内分泌学
作者
Jiayi Yi,Lili Wang,Jiali Song,Yanchen Liu,Jiamin Liu,Haibo Zhang,Jiapeng Lu,Xin Zheng
出处
期刊:Nutrition Metabolism and Cardiovascular Diseases [Elsevier]
标识
DOI:10.1016/j.numecd.2024.02.014
摘要

Background and Aims Personalized antihypertensive drug selection is essential for optimizing hypertension management. The study aimed to develop a machine learning (ML) model to predict individual blood pressure (BP) responses to different antihypertensive medications. Methods and Results We used data from a pragmatic, cluster-randomized trial on hypertension management in China. Each patient's multiple visit records were included, and two consecutive visits were paired as the index and subsequent visits. The least absolute shrinkage and selection operator method was used to select index visit variables for predicting subsequent BP. The dataset was randomly divided into training and test sets in a 7:3 ratio. Model performance was evaluated using mean absolute error (MAE) and R-square in the test set. A total of 19013 hypertension management visit records (6282 patients) were included. The mean age of the study population was 63.9 years, and 2657 (42.3%) were females. A total of 12 phenotypical features (age, sex, smoking within seven days, body mass index, waist circumference, index visit systolic BP, diastolic BP, heart rate, comorbidities of diabetes, dyslipidemia, coronary heart disease, and stroke), together with currently taking any prescribed antihypertensive medication regimens and visits time interval were selected to build the model. The Extreme Gradient Boost model performed best among all candidate algorithms, with an MAE of 8.57 mmHg and an R2 = 0.28 in the test set. Conclusion The ML techniques exhibit significant potential for predicting individual responses to antihypertensive treatments, thereby aiding clinicians in achieving optimal BP control safely and efficiently. Trial Registration ClinicalTrials.gov, NCT03636334. Registered 3 July 2018, https://clinicaltrials.gov/study/NCT03636334.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助10
4秒前
甜甜圈完成签到 ,获得积分10
5秒前
huco完成签到,获得积分10
5秒前
归尘完成签到,获得积分10
6秒前
淞淞于我完成签到 ,获得积分10
10秒前
生动的煎蛋完成签到 ,获得积分10
18秒前
鱼人完成签到,获得积分10
20秒前
桐桐应助俊逸莆采纳,获得10
21秒前
ttqql完成签到,获得积分10
22秒前
hute完成签到 ,获得积分10
23秒前
波哥发布了新的文献求助10
26秒前
奕苼完成签到 ,获得积分10
28秒前
科研王子完成签到 ,获得积分10
35秒前
39秒前
俊逸莆发布了新的文献求助10
45秒前
爱吃草莓和菠萝的吕可爱完成签到,获得积分10
52秒前
失眠的冬易完成签到 ,获得积分10
53秒前
Lina完成签到 ,获得积分10
1分钟前
ppapp完成签到,获得积分10
1分钟前
王佳亮完成签到,获得积分10
1分钟前
瞄准月亮完成签到 ,获得积分10
1分钟前
asdf完成签到 ,获得积分10
1分钟前
Ly完成签到 ,获得积分10
1分钟前
温馨完成签到 ,获得积分10
1分钟前
英吉利25发布了新的文献求助10
1分钟前
neu_zxy1991完成签到,获得积分10
1分钟前
Silence完成签到 ,获得积分10
1分钟前
小马甲应助lzy303886采纳,获得10
1分钟前
斯文雪青完成签到,获得积分10
1分钟前
小森完成签到,获得积分10
1分钟前
彭于晏应助科研通管家采纳,获得10
1分钟前
boymin2015完成签到 ,获得积分10
1分钟前
boymin2015完成签到 ,获得积分10
1分钟前
juliar完成签到 ,获得积分10
1分钟前
李健的小迷弟应助小森采纳,获得10
1分钟前
roger完成签到,获得积分10
1分钟前
奋斗奋斗再奋斗完成签到,获得积分10
1分钟前
1分钟前
1分钟前
奥丁不言语完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565171
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689486
捐赠科研通 4591896
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136