亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8

计算机科学 质量(理念) 农业工程 工程类 认识论 哲学
作者
Siqi Niu,Xijia Xu,Aibin Liang,Yuliang Yun,Li Li,Fengqi Hao,Jinqiang Bai,Dexin Ma
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/access.2024.3365559
摘要

Seeds are the most basic and important means of production for agriculture. During the production and processing of seeds, they may undergo potential mechanical damages and mildew alterations, which might jeopardize their germination viability. Hence, checking the quality of seeds before sowing is of paramount importance for the benefit of the sower and the safety of agricultural production. In order to achieve an efficient detection of maize seed quality, our experiment assembled a dataset composed of 2,128 seeds with four different health statuses of maize: healthy, broken, moth-eaten, and mildewed. In this thesis, we proposed a lightweight maize seed quality detection model for small objects based on improved YOLOv8: I-YOLOv8. Firstly, we introduced a multi-scale attention mechanism called EMA to efficiently retain information across channels and reduce computational load. Next, we chosen the SPD-Conv module for low-resolution images and small objects, and applied it to the backbone, which addressed the loss of fine-grained information and the less efficient learning of feature representations present in YOLOv8. Lastly, we reduced the large detection layer, which directed the network to pay more attention to the location, channel, and dimensional information of smaller objects, and we also replaced the loss function with WIoUv3. We validated our model using ablation studies and compared it with YOLOv5, YOLOv6, and YOLOv8. The mAP (Mean Average Precision) of the improved model I_YOLOv8 reaches 98.5%, which is 6.7% higher than YOLOv8. The average recognition time per image was 163.9fps, a boost of 5.2fps compared to YOLOv8. This study lays a theoretical foundation for the efficient, convenient, and rapid detection of maize quality, while also offering a technical basis for advancing automated maize quality detection means.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
8秒前
孤海未蓝发布了新的文献求助10
17秒前
25秒前
科研通AI5应助江河湖海采纳,获得30
26秒前
英俊的铭应助杰帅采纳,获得10
28秒前
YYY666驳回了852应助
28秒前
xiao发布了新的文献求助10
30秒前
哇咔咔完成签到 ,获得积分10
31秒前
35秒前
汉堡包应助LNE采纳,获得10
38秒前
机智大白菜真实的钥匙完成签到,获得积分10
48秒前
52秒前
时间的过客完成签到,获得积分10
54秒前
搜集达人应助科研通管家采纳,获得10
1分钟前
李爱国应助科研通管家采纳,获得10
1分钟前
情怀应助科研通管家采纳,获得80
1分钟前
1分钟前
1分钟前
孤独的大灰狼完成签到 ,获得积分10
1分钟前
LNE发布了新的文献求助10
1分钟前
1分钟前
LNE完成签到,获得积分10
1分钟前
1分钟前
不知道是谁完成签到,获得积分10
1分钟前
FashionBoy应助梦华老师采纳,获得10
1分钟前
美罗培南完成签到,获得积分10
1分钟前
1分钟前
K.I.D完成签到,获得积分10
1分钟前
李健的小迷弟应助K.I.D采纳,获得10
1分钟前
1分钟前
梦华老师发布了新的文献求助10
1分钟前
木之尹完成签到 ,获得积分10
1分钟前
wzm完成签到,获得积分10
2分钟前
2分钟前
wzm发布了新的文献求助10
2分钟前
酷酷的王完成签到 ,获得积分10
2分钟前
2分钟前
小胖完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544380
求助须知:如何正确求助?哪些是违规求助? 3121574
关于积分的说明 9347880
捐赠科研通 2819813
什么是DOI,文献DOI怎么找? 1550461
邀请新用户注册赠送积分活动 722559
科研通“疑难数据库(出版商)”最低求助积分说明 713273