TreeDetector: Using Deep Learning for the Localization and Reconstruction of Urban Trees from High-Resolution Remote Sensing Images

遥感 高分辨率 人工智能 计算机科学 深度学习 计算机视觉 地质学
作者
Haoyu Gong,Qian Sun,Chenrong Fang,Le Sun,Ran Su
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (3): 524-524 被引量:2
标识
DOI:10.3390/rs16030524
摘要

There have been considerable efforts in generating tree crown maps from satellite images. However, tree localization in urban environments using satellite imagery remains a challenging task. One of the difficulties in complex urban tree detection tasks lies in the segmentation of dense tree crowns. Currently, methods based on semantic segmentation algorithms have made significant progress. We propose to split the tree localization problem into two parts, dense clusters and single trees, and combine the target detection method with a procedural generation method based on planting rules for the complex urban tree detection task, which improves the accuracy of single tree detection. Specifically, we propose a two-stage urban tree localization pipeline that leverages deep learning and planting strategy algorithms along with region discrimination methods. This approach ensures the precise localization of individual trees while also facilitating distribution inference within dense tree canopies. Additionally, our method estimates the radius and height of trees, which provides significant advantages for three-dimensional reconstruction tasks from remote sensing images. We compare our results with other existing methods, achieving an 82.3% accuracy in individual tree localization. This method can be seamlessly integrated with the three-dimensional reconstruction of urban trees. We visualized the three-dimensional reconstruction of urban trees generated by this method, which demonstrates the diversity of tree heights and provides a more realistic solution for tree distribution generation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
wzhmark发布了新的文献求助10
2秒前
伯赏秋白完成签到,获得积分10
2秒前
SYLH应助口味复杂的土豆采纳,获得10
2秒前
2秒前
3秒前
yaoyaoyao发布了新的文献求助10
3秒前
zzz发布了新的文献求助20
3秒前
共享精神应助自信的秋灵采纳,获得10
4秒前
jiao发布了新的文献求助10
4秒前
FashionBoy应助乐观远侵采纳,获得10
5秒前
我是老大应助Arthur采纳,获得30
7秒前
Zlinco发布了新的文献求助10
7秒前
7秒前
来日可追应助遇见采纳,获得10
7秒前
grs完成签到,获得积分10
7秒前
HonglinGao发布了新的文献求助10
8秒前
啾啾完成签到,获得积分10
8秒前
zwww完成签到,获得积分10
8秒前
谨慎冰薇发布了新的文献求助10
10秒前
10秒前
renxuda完成签到,获得积分10
10秒前
11秒前
11秒前
要减肥小夏完成签到,获得积分20
12秒前
正直的以冬完成签到,获得积分10
12秒前
13秒前
oliva发布了新的文献求助10
14秒前
上官若男应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
小李加油完成签到,获得积分10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
顾矜应助科研通管家采纳,获得10
15秒前
迟大猫应助科研通管家采纳,获得10
15秒前
xavier完成签到 ,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1050
Les Mantodea de Guyane Insecta, Polyneoptera 1000
England and the Discovery of America, 1481-1620 600
Teaching language in context (Third edition) by Derewianka, Beverly; Jones, Pauline 550
Oligonucleotide Synthesis: a Practical Approach 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3589979
求助须知:如何正确求助?哪些是违规求助? 3158436
关于积分的说明 9519836
捐赠科研通 2861379
什么是DOI,文献DOI怎么找? 1572442
邀请新用户注册赠送积分活动 737920
科研通“疑难数据库(出版商)”最低求助积分说明 722567