Deep learning‐based quantification and transcriptomic profiling reveal a methyl jasmonate‐mediated glandular trichome formation pathway in Cannabis sativa

毛状体 转录组 茉莉酸甲酯 表型 大麻素 基因表达谱 茉莉酸 大麻 转录因子 生物 计算生物学 细胞生物学 遗传学 植物 基因 拟南芥 基因表达 受体 精神科 突变体 心理学
作者
Xiaoqin Huang,Wei Chen,Yuqing Zhao,Jingjing Chen,Yuzeng Ouyang,Minxuan Li,Yu Gu,Qinqin Wu,Sen Cai,Foqin Guo,Panpan Zhu,Deyong Ao,Shijun You,Liette Vasseur,Yuanyuan Liu
出处
期刊:Plant Journal [Wiley]
卷期号:118 (4): 1155-1173
标识
DOI:10.1111/tpj.16663
摘要

SUMMARY Cannabis glandular trichomes (GTs) are economically and biotechnologically important structures that have a remarkable morphology and capacity to produce, store, and secrete diverse classes of secondary metabolites. However, our understanding of the developmental changes and the underlying molecular processes involved in cannabis GT development is limited. In this study, we developed Cannabis Glandular Trichome Detection Model (CGTDM), a deep learning‐based model capable of differentiating and quantifying three types of cannabis GTs with a high degree of efficiency and accuracy. By profiling at eight different time points, we captured dynamic changes in gene expression, phenotypes, and metabolic processes associated with GT development. By integrating weighted gene co‐expression network analysis with CGTDM measurements, we established correlations between phenotypic variations in GT traits and the global transcriptome profiles across the developmental gradient. Notably, we identified a module containing methyl jasmonate (MeJA)‐responsive genes that significantly correlated with stalked GT density and cannabinoid content during development, suggesting the existence of a MeJA‐mediated GT formation pathway. Our findings were further supported by the successful promotion of GT development in cannabis through exogenous MeJA treatment. Importantly, we have identified CsMYC4 as a key transcription factor that positively regulates GT formation via MeJA signaling in cannabis. These findings provide novel tools for GT detection and counting, as well as valuable information for understanding the molecular regulatory mechanism of GT formation, which has the potential to facilitate the molecular breeding, targeted engineering, informed harvest timing, and manipulation of cannabinoid production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yll完成签到,获得积分10
刚刚
cheng应助火凌焱采纳,获得10
1秒前
1秒前
sci_zt发布了新的文献求助10
2秒前
科研通AI5应助SYT采纳,获得10
3秒前
bb完成签到 ,获得积分10
3秒前
诱导效应发布了新的文献求助10
3秒前
Jonsnow发布了新的文献求助10
4秒前
5秒前
可爱的函函应助123采纳,获得10
5秒前
科目三应助Atoxus采纳,获得10
5秒前
Zxyvv发布了新的文献求助10
5秒前
swordlee发布了新的文献求助10
5秒前
梁其杰完成签到,获得积分10
5秒前
bb关注了科研通微信公众号
6秒前
8秒前
情怀应助典雅的俊驰采纳,获得10
9秒前
9秒前
www152发布了新的文献求助10
10秒前
鹿梦完成签到 ,获得积分20
10秒前
CodeCraft应助fagfagsf采纳,获得10
12秒前
12秒前
宁静致远发布了新的文献求助10
15秒前
16秒前
16秒前
zly完成签到 ,获得积分10
16秒前
qazpsy完成签到,获得积分10
16秒前
bkagyin应助mlml采纳,获得10
17秒前
小二郎应助含蓄的明雪采纳,获得10
17秒前
兰禾完成签到 ,获得积分10
17秒前
18秒前
顺利的紫真完成签到,获得积分20
18秒前
18秒前
良辰应助兴奋的之玉采纳,获得10
18秒前
19秒前
学fei了吗完成签到,获得积分10
19秒前
swordlee发布了新的文献求助10
20秒前
Atoxus发布了新的文献求助10
21秒前
李爱国应助陶醉的萧采纳,获得10
21秒前
death完成签到,获得积分20
22秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546392
求助须知:如何正确求助?哪些是违规求助? 3123535
关于积分的说明 9355677
捐赠科研通 2822080
什么是DOI,文献DOI怎么找? 1551259
邀请新用户注册赠送积分活动 723282
科研通“疑难数据库(出版商)”最低求助积分说明 713690