Multi-source heterogeneous information fusion fault diagnosis method based on deep neural networks under limited datasets

计算机科学 稳健性(进化) 数据挖掘 深信不疑网络 卷积神经网络 人工智能 人工神经网络 原始数据 机器学习 特征工程 深度学习 生物化学 化学 基因 程序设计语言
作者
Peiming Shi,Yu Zhang,Yue Yu,Jinghui Tian,Peiming Shi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:154: 111371-111371 被引量:1
标识
DOI:10.1016/j.asoc.2024.111371
摘要

Intelligent fault diagnosis of critical components of rotating machinery is essential for enhancing production efficiency and reducing maintenance costs. However, the scarce labeled samples and the single monitoring data hinder the engineering application and generalization of diagnostic models to some extent. To this end, a novel multi-source heterogeneous information fusion (MSHIF) network is proposed in this paper to identify the health status of rotating machinery more comprehensively and robustly under limited datasets. Specifically, the data enhanced deep belief network (DEDBN) and data enhanced one-dimension convolutional neural network (DE-1DCNN) are firstly designed by repeatedly appending raw data to the hierarchy of conventional deep belief network (DBN) and one-dimension convolutional neural network (1DCNN). DEDBN and DE-1DCNN improve the diagnostic performance of the model under limited datasets while effectively mitigating the loss of potentially valuable information during layer-by-layer feature extraction and compression of DBN and CNN. Then, the MSHIF is further constructed with the designed DEDBN and DE-1DCNN as structural branches. MSHIF aims to alleviate the limitations of scarce labeled samples and single monitoring data on diagnostic performance within a unified framework by mining the rich and complementary device status information in multi-source heterogeneous monitoring data. Extensive comparative experiments and detailed discussions are constructed on both publicly available datasets and rolling mill experimental dataset to verify the feasibility and effectiveness of MSHIF. The experimental results demonstrate that the proposed MSHIF outperforms other comparative methods in terms of diagnostic accuracy, stability, and robustness against noise, achieving 99.491%, 99.143%, and 99.037% average identification accuracy on three cases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助丙泊酚采纳,获得10
3秒前
晓彤完成签到,获得积分10
4秒前
4秒前
4秒前
lalalaaaa发布了新的文献求助10
4秒前
丘比特应助科研废物采纳,获得10
4秒前
狂野含巧完成签到 ,获得积分10
5秒前
薰硝壤应助Crane采纳,获得10
6秒前
jackycas完成签到,获得积分10
6秒前
lxh完成签到,获得积分10
6秒前
feizao完成签到,获得积分10
7秒前
潇洒一曲完成签到,获得积分10
7秒前
中中发布了新的文献求助10
7秒前
9秒前
开放的尔云完成签到 ,获得积分10
10秒前
晓彤发布了新的文献求助10
11秒前
李健应助lalalaaaa采纳,获得10
11秒前
13秒前
袁融发布了新的文献求助10
13秒前
zipperhead关注了科研通微信公众号
13秒前
科研通AI2S应助想多睡会儿采纳,获得10
14秒前
今后应助小小技术工采纳,获得10
15秒前
Yuting发布了新的文献求助10
17秒前
科研通AI2S应助MCC采纳,获得10
17秒前
24K纯帅完成签到,获得积分10
20秒前
moon完成签到,获得积分10
22秒前
之_ZH完成签到 ,获得积分10
23秒前
24秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
搜集达人应助科研通管家采纳,获得10
25秒前
丘比特应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
李健应助科研通管家采纳,获得10
26秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
Ava应助科研通管家采纳,获得30
26秒前
Owen应助科研通管家采纳,获得10
26秒前
研友_VZG7GZ应助科研通管家采纳,获得10
26秒前
26秒前
26秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237