清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-source heterogeneous information fusion fault diagnosis method based on deep neural networks under limited datasets

计算机科学 稳健性(进化) 数据挖掘 深信不疑网络 卷积神经网络 人工智能 人工神经网络 原始数据 机器学习 特征工程 深度学习 生物化学 化学 基因 程序设计语言
作者
Dongying Han,Yu Zhang,Yue Yu,Jinghui Tian,Peiming Shi
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:154: 111371-111371 被引量:5
标识
DOI:10.1016/j.asoc.2024.111371
摘要

Intelligent fault diagnosis of critical components of rotating machinery is essential for enhancing production efficiency and reducing maintenance costs. However, the scarce labeled samples and the single monitoring data hinder the engineering application and generalization of diagnostic models to some extent. To this end, a novel multi-source heterogeneous information fusion (MSHIF) network is proposed in this paper to identify the health status of rotating machinery more comprehensively and robustly under limited datasets. Specifically, the data enhanced deep belief network (DEDBN) and data enhanced one-dimension convolutional neural network (DE-1DCNN) are firstly designed by repeatedly appending raw data to the hierarchy of conventional deep belief network (DBN) and one-dimension convolutional neural network (1DCNN). DEDBN and DE-1DCNN improve the diagnostic performance of the model under limited datasets while effectively mitigating the loss of potentially valuable information during layer-by-layer feature extraction and compression of DBN and CNN. Then, the MSHIF is further constructed with the designed DEDBN and DE-1DCNN as structural branches. MSHIF aims to alleviate the limitations of scarce labeled samples and single monitoring data on diagnostic performance within a unified framework by mining the rich and complementary device status information in multi-source heterogeneous monitoring data. Extensive comparative experiments and detailed discussions are constructed on both publicly available datasets and rolling mill experimental dataset to verify the feasibility and effectiveness of MSHIF. The experimental results demonstrate that the proposed MSHIF outperforms other comparative methods in terms of diagnostic accuracy, stability, and robustness against noise, achieving 99.491%, 99.143%, and 99.037% average identification accuracy on three cases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
57秒前
1分钟前
1分钟前
熊猫胖胖WITH超人完成签到,获得积分20
1分钟前
1分钟前
耍酷平凡发布了新的文献求助10
1分钟前
1分钟前
ewxf2001发布了新的文献求助10
1分钟前
1分钟前
花园里的蒜完成签到 ,获得积分0
1分钟前
荔枝发布了新的文献求助20
1分钟前
ewxf2001完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
cxwcn完成签到 ,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
2分钟前
wmj完成签到,获得积分10
2分钟前
Ava应助落寞的又菡采纳,获得10
2分钟前
刚子完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
jiejie完成签到,获得积分10
3分钟前
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
耍酷平凡完成签到,获得积分10
4分钟前
荔枝发布了新的文献求助10
5分钟前
5分钟前
连安阳完成签到,获得积分10
5分钟前
6分钟前
荔枝发布了新的文献求助10
6分钟前
丁老三完成签到 ,获得积分10
6分钟前
7分钟前
Jim发布了新的文献求助10
7分钟前
7分钟前
7分钟前
两个榴莲完成签到,获得积分0
8分钟前
8分钟前
Unlisted发布了新的文献求助10
8分钟前
落寞的又菡完成签到,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4582521
求助须知:如何正确求助?哪些是违规求助? 4000238
关于积分的说明 12382295
捐赠科研通 3675277
什么是DOI,文献DOI怎么找? 2025775
邀请新用户注册赠送积分活动 1059428
科研通“疑难数据库(出版商)”最低求助积分说明 946108