Multi-source heterogeneous information fusion fault diagnosis method based on deep neural networks under limited datasets

计算机科学 稳健性(进化) 数据挖掘 深信不疑网络 卷积神经网络 人工智能 人工神经网络 原始数据 机器学习 特征工程 深度学习 生物化学 化学 基因 程序设计语言
作者
Dongying Han,Yu Zhang,Yue Yu,Jinghui Tian,Peiming Shi
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:154: 111371-111371 被引量:5
标识
DOI:10.1016/j.asoc.2024.111371
摘要

Intelligent fault diagnosis of critical components of rotating machinery is essential for enhancing production efficiency and reducing maintenance costs. However, the scarce labeled samples and the single monitoring data hinder the engineering application and generalization of diagnostic models to some extent. To this end, a novel multi-source heterogeneous information fusion (MSHIF) network is proposed in this paper to identify the health status of rotating machinery more comprehensively and robustly under limited datasets. Specifically, the data enhanced deep belief network (DEDBN) and data enhanced one-dimension convolutional neural network (DE-1DCNN) are firstly designed by repeatedly appending raw data to the hierarchy of conventional deep belief network (DBN) and one-dimension convolutional neural network (1DCNN). DEDBN and DE-1DCNN improve the diagnostic performance of the model under limited datasets while effectively mitigating the loss of potentially valuable information during layer-by-layer feature extraction and compression of DBN and CNN. Then, the MSHIF is further constructed with the designed DEDBN and DE-1DCNN as structural branches. MSHIF aims to alleviate the limitations of scarce labeled samples and single monitoring data on diagnostic performance within a unified framework by mining the rich and complementary device status information in multi-source heterogeneous monitoring data. Extensive comparative experiments and detailed discussions are constructed on both publicly available datasets and rolling mill experimental dataset to verify the feasibility and effectiveness of MSHIF. The experimental results demonstrate that the proposed MSHIF outperforms other comparative methods in terms of diagnostic accuracy, stability, and robustness against noise, achieving 99.491%, 99.143%, and 99.037% average identification accuracy on three cases, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
son完成签到,获得积分10
刚刚
Jimmybythebay发布了新的文献求助10
刚刚
ZHANGHUI完成签到,获得积分10
刚刚
毛毛雨发布了新的文献求助10
刚刚
1秒前
conezyme发布了新的文献求助10
1秒前
炙热晓露完成签到,获得积分10
1秒前
1秒前
___赵发布了新的文献求助10
2秒前
重要问旋完成签到,获得积分10
2秒前
无极微光应助紧张的幻桃采纳,获得20
2秒前
zwq完成签到,获得积分10
3秒前
ezreal完成签到,获得积分10
5秒前
Jason完成签到,获得积分10
6秒前
XXXXL发布了新的文献求助10
7秒前
哈哈哈哈发布了新的文献求助10
7秒前
鹿卡完成签到,获得积分10
7秒前
爱笑的枫叶完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
AAAAA完成签到,获得积分10
10秒前
10秒前
10秒前
疯丫头完成签到,获得积分10
11秒前
FeiL发布了新的文献求助10
11秒前
11秒前
11秒前
无极微光应助杨阳洋采纳,获得20
13秒前
wwl完成签到,获得积分10
13秒前
13秒前
樱桃发布了新的文献求助10
14秒前
15秒前
AAAAA发布了新的文献求助10
16秒前
好问题应助哈哈哈哈采纳,获得10
16秒前
哈基米发布了新的文献求助10
17秒前
cchenn发布了新的文献求助10
17秒前
兔子完成签到,获得积分10
18秒前
量子星尘发布了新的文献求助20
19秒前
WuZY发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419716
求助须知:如何正确求助?哪些是违规求助? 4535007
关于积分的说明 14147657
捐赠科研通 4451699
什么是DOI,文献DOI怎么找? 2441798
邀请新用户注册赠送积分活动 1433423
关于科研通互助平台的介绍 1410644