Effective Density-Based Concept Drift Detection for Evolving Data Streams

滑动窗口协议 概念漂移 数据流挖掘 计算机科学 数据挖掘 聚类分析 窗口(计算) 数据流 航程(航空) 人工智能 工程类 电信 操作系统 航空航天工程
作者
Zelin Cui,Hui Tian,Hong Shen
出处
期刊:Lecture notes in electrical engineering 卷期号:: 190-201
标识
DOI:10.1007/978-981-99-8211-0_18
摘要

Concept drift is a common phenomenon appearing in evolving data streams of a wide range of applications including credit card fraud protection, weather forecast, network monitoring, etc. For online data streams it is difficult to determine a proper size of the sliding window for detection of concept drift, making the existing dataset-distance based algorithms not effective in application. In this paper, we propose a novel framework of Density-based Concept Drift Detection (DCDD) for detecting concept drifts in data streams using density-based clustering on a variable-size sliding window through dynamically adjusting the size of the sliding window. Our DCDD uses XGBoost (eXtreme Gradient Boosting) to predict the amount of data in the same concept and adjusts the size of the sliding window dynamically based on the collected information about concept drifting. To detect concept drift between two datasets, DCDD calculates the distance between the datasets using a new detection formula that considers the attribute of time as the weight for old data and calculates the distance between the data in the current sliding window and all data in the current concept rather than between two adjacent windows as used in the exiting work DCDA [2]. This yields an observable improvement on the detection accuracy and a significant improvement on the detection efficiency. Experimental results have shown that our framework detects the concept drift more accurately and efficiently than the existing work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后知后觉发布了新的文献求助10
1秒前
整齐泥猴桃完成签到,获得积分10
1秒前
xiaoxiaomi应助舒涵采纳,获得30
1秒前
情怀应助JERRY采纳,获得10
1秒前
Hungrylunch应助CHL5722采纳,获得20
1秒前
liucong046完成签到,获得积分10
1秒前
1秒前
CodeCraft应助科研cc采纳,获得10
1秒前
2秒前
云里完成签到,获得积分10
2秒前
谦让傲菡完成签到 ,获得积分10
2秒前
小汪完成签到,获得积分10
2秒前
3秒前
qyhl完成签到,获得积分10
3秒前
xwc完成签到,获得积分10
3秒前
Booiys完成签到,获得积分10
4秒前
4秒前
852应助xqwwqx采纳,获得10
4秒前
4秒前
5秒前
HEIKU举报饱饱的芋头求助涉嫌违规
5秒前
相信相信的力量完成签到,获得积分10
5秒前
海风发布了新的文献求助10
5秒前
6秒前
赘婿应助小冉采纳,获得10
6秒前
科研通AI5应助杨杨杨采纳,获得10
6秒前
烫睫毛完成签到 ,获得积分10
6秒前
xiaoming发布了新的文献求助10
6秒前
思源应助吴五五采纳,获得10
7秒前
加拿大一枝黄花完成签到,获得积分10
7秒前
EunolusZ完成签到,获得积分10
7秒前
7秒前
成就莞完成签到,获得积分10
7秒前
Ww完成签到,获得积分10
8秒前
yaoyao发布了新的文献求助10
8秒前
8秒前
佰斯特威发布了新的文献求助30
9秒前
Dawn发布了新的文献求助10
9秒前
9秒前
认真的可冥完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672