Detection and classification of brain tumor using hybrid deep learning models

计算机科学 人工智能 卷积神经网络 脑瘤 稳健性(进化) 深度学习 F1得分 机器学习 可视化 模式识别(心理学) 学习迁移 磁共振成像 病理 放射科 医学 基因 生物化学 化学
作者
Baiju Babu Vimala,Saravanan Srinivasan,Sandeep Kumar Mathivanan,Mahalakshmi Mahalakshmi,Prabhu Jayagopal,Gemmachis Teshite Dalu
出处
期刊:Scientific Reports [Springer Nature]
卷期号:13 (1) 被引量:33
标识
DOI:10.1038/s41598-023-50505-6
摘要

Abstract Accurately classifying brain tumor types is critical for timely diagnosis and potentially saving lives. Magnetic Resonance Imaging (MRI) is a widely used non-invasive method for obtaining high-contrast grayscale brain images, primarily for tumor diagnosis. The application of Convolutional Neural Networks (CNNs) in deep learning has revolutionized diagnostic systems, leading to significant advancements in medical imaging interpretation. In this study, we employ a transfer learning-based fine-tuning approach using EfficientNets to classify brain tumors into three categories: glioma, meningioma, and pituitary tumors. We utilize the publicly accessible CE-MRI Figshare dataset to fine-tune five pre-trained models from the EfficientNets family, ranging from EfficientNetB0 to EfficientNetB4. Our approach involves a two-step process to refine the pre-trained EfficientNet model. First, we initialize the model with weights from the ImageNet dataset. Then, we add additional layers, including top layers and a fully connected layer, to enable tumor classification. We conduct various tests to assess the robustness of our fine-tuned EfficientNets in comparison to other pre-trained models. Additionally, we analyze the impact of data augmentation on the model's test accuracy. To gain insights into the model's decision-making, we employ Grad-CAM visualization to examine the attention maps generated by the most optimal model, effectively highlighting tumor locations within brain images. Our results reveal that using EfficientNetB2 as the underlying framework yields significant performance improvements. Specifically, the overall test accuracy, precision, recall, and F1-score were found to be 99.06%, 98.73%, 99.13%, and 98.79%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ophelia发布了新的文献求助10
3秒前
3秒前
冷酷鸭子发布了新的文献求助10
3秒前
李健的小迷弟应助七柚采纳,获得10
4秒前
研友_nPKAEL完成签到,获得积分10
5秒前
sybil发布了新的文献求助10
6秒前
落雪琦叶完成签到 ,获得积分10
6秒前
小鹿斑比发布了新的文献求助10
8秒前
驰驰发布了新的文献求助10
8秒前
想飞的猪发布了新的文献求助20
8秒前
汉堡包应助安静河马采纳,获得10
9秒前
Ml1403完成签到,获得积分10
9秒前
10秒前
12秒前
脑洞疼应助含蓄清炎采纳,获得10
12秒前
大个应助蔚蓝天空采纳,获得10
12秒前
优秀冰真完成签到,获得积分10
13秒前
14秒前
别吃我的鱼完成签到,获得积分10
14秒前
sybil完成签到,获得积分10
15秒前
小飞七应助Ml1403采纳,获得10
16秒前
16秒前
17秒前
ronnie发布了新的文献求助10
18秒前
FXT完成签到 ,获得积分10
21秒前
单纯的思松完成签到,获得积分10
22秒前
xiaoxioayixi完成签到 ,获得积分10
24秒前
27秒前
28秒前
28秒前
Lucas应助ronnie采纳,获得10
28秒前
优雅的皮皮虾完成签到,获得积分10
28秒前
樨樨发布了新的文献求助10
29秒前
小晓完成签到,获得积分10
29秒前
李健应助杪123采纳,获得10
30秒前
31秒前
34秒前
mumu发布了新的文献求助10
35秒前
郑qqqq发布了新的文献求助10
35秒前
大模型应助幸福纹采纳,获得10
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3542875
求助须知:如何正确求助?哪些是违规求助? 3120166
关于积分的说明 9341799
捐赠科研通 2818206
什么是DOI,文献DOI怎么找? 1549434
邀请新用户注册赠送积分活动 722146
科研通“疑难数据库(出版商)”最低求助积分说明 712978