Synthesis, Characterization, and Evaluation of Co-MOF Based ZIF-67 for CO2 Corrosion Inhibition of X65 Steel: Insights from Electrochemical Studies and a Machine Learning Algorithm

腐蚀 电化学 材料科学 水溶液 吸附 金属 化学工程 化学 冶金 物理化学 电极 工程类
作者
Valentine Chikaodili Anadebe,Vitalis Ikenna Chukwuike,Maduabuchi Arinzechukwu Chidiebere,Rakesh Chandra Barik
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:127 (20): 9871-9886 被引量:28
标识
DOI:10.1021/acs.jpcc.3c01543
摘要

Co-MOF based metal organic framework was synthesized by reacting a metal ion (cobalt nitrate hexahydrate) with an organic ligand (2-methylimidazole) via a wet chemical method. The resulting material was characterized using detailed analytical methods and further was used as a self-assembly corrosion inhibitor in sweet corrosive environment. The empirical data set via electrochemical studies was modeled using adaptive neuro fuzzy inference system (ANFIS). The observed results showed that Co-MOF could significantly impede the corrosion rate of X65 steel and protect it from CO2 corrosion. Increasing the concentration of Co-MOF in the test solution increased the inhibition efficiency up to 97% at 0.1 wt % Co-MOF with a mixed-type inhibition mechanism. In addition, the DFT/MD-simulation approach evidenced the adsorption disposition of Co-MOF in aqueous and gas phase which complement with the empirical findings. Also, the prognostic capability of the proposed algorithm based on the statistical parameters such as root-mean-square error (RMSE), chi square (χ2), model predictive error (MPE) and coefficient of determination (R2) were appraised. From the viewpoint of statistics, the explanatory model aligned credibly with the ANFIS algorithm. The overall findings confirmed a dense hybrid coating of the synthesized Co-MOF on X65 steel as responsible for the inhibition of the sweet corrosion.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hcmsaobang2001完成签到,获得积分10
1秒前
英俊的铭应助赵十一采纳,获得10
1秒前
HY发布了新的文献求助30
1秒前
ly发布了新的文献求助10
2秒前
2秒前
36456657应助kk采纳,获得10
2秒前
yuxuan发布了新的文献求助10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
乐乐应助Surge采纳,获得10
4秒前
4秒前
CipherSage应助水123采纳,获得10
4秒前
随便起个吧完成签到 ,获得积分10
4秒前
May发布了新的文献求助10
4秒前
夜寻发布了新的文献求助10
5秒前
1111111完成签到,获得积分10
5秒前
5秒前
夏墨发布了新的文献求助10
5秒前
5秒前
5秒前
有魅力的雨梅完成签到,获得积分10
6秒前
Ava应助龙行天下采纳,获得10
6秒前
策略完成签到,获得积分10
6秒前
Hhh完成签到 ,获得积分10
6秒前
脆脆鲨发布了新的文献求助10
6秒前
XX发布了新的文献求助10
6秒前
7秒前
rsy完成签到,获得积分10
7秒前
7秒前
8秒前
liao应助托勒兰德安德烈采纳,获得10
8秒前
8秒前
9秒前
Surge完成签到,获得积分10
9秒前
聪明邪欢完成签到,获得积分10
9秒前
Linjiannan发布了新的文献求助10
9秒前
灌水大王发布了新的文献求助10
9秒前
9秒前
9秒前
JamesPei应助铛铛铛采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667772
求助须知:如何正确求助?哪些是违规求助? 4887765
关于积分的说明 15121847
捐赠科研通 4826643
什么是DOI,文献DOI怎么找? 2584209
邀请新用户注册赠送积分活动 1538157
关于科研通互助平台的介绍 1496386