Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 量子力学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
leeteukxx发布了新的文献求助10
刚刚
刚刚
王肖宁发布了新的文献求助10
1秒前
mikiisme发布了新的文献求助10
1秒前
1秒前
2秒前
江月年年发布了新的文献求助10
2秒前
科研通AI2S应助北酱采纳,获得10
2秒前
小嘿嘿发布了新的文献求助10
3秒前
3秒前
Nwafu发布了新的文献求助30
3秒前
脑洞疼应助刘天义采纳,获得10
3秒前
chiien完成签到 ,获得积分10
4秒前
英姑应助登登采纳,获得10
4秒前
长风发布了新的文献求助10
4秒前
JACS发布了新的文献求助10
4秒前
5秒前
5秒前
Zoe发布了新的文献求助30
6秒前
量子星尘发布了新的文献求助10
6秒前
小米粥发布了新的文献求助10
6秒前
一个白鑫发布了新的文献求助10
6秒前
FABLE完成签到 ,获得积分10
7秒前
8秒前
8秒前
123a应助djbj2022采纳,获得10
8秒前
8秒前
8秒前
10秒前
桐桐应助王肖宁采纳,获得10
10秒前
10秒前
10秒前
11秒前
小膘膘完成签到,获得积分10
11秒前
11秒前
感动冰海完成签到,获得积分10
12秒前
12秒前
13秒前
Adrian发布了新的文献求助10
13秒前
田様应助yther采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008