Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 量子力学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助ebby采纳,获得10
2秒前
SyncMaster完成签到,获得积分10
2秒前
xm完成签到 ,获得积分10
3秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
顾矜应助无奈的小松鼠采纳,获得10
4秒前
情怀应助无奈的小松鼠采纳,获得10
4秒前
bkagyin应助无奈的小松鼠采纳,获得10
4秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
pluto应助无奈的小松鼠采纳,获得10
4秒前
4秒前
华仔应助无奈的小松鼠采纳,获得10
4秒前
JamesPei应助无奈的小松鼠采纳,获得10
4秒前
打打应助无奈的小松鼠采纳,获得10
4秒前
RSC完成签到,获得积分10
5秒前
5秒前
Akim应助momo采纳,获得10
6秒前
6秒前
7秒前
所所应助cheese采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
10秒前
zh完成签到,获得积分10
11秒前
12秒前
老迟到的小蘑菇完成签到,获得积分10
12秒前
12秒前
丘比特应助侦察兵采纳,获得10
13秒前
yicheng完成签到,获得积分10
13秒前
Zeeia完成签到,获得积分10
13秒前
icey发布了新的文献求助10
14秒前
14秒前
懵懂的明辉完成签到,获得积分10
16秒前
16秒前
17秒前
天气晴朗发布了新的文献求助10
18秒前
momo完成签到,获得积分10
18秒前
18秒前
19秒前
19秒前
峇蘭完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424345
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163720
捐赠科研通 4455670
什么是DOI,文献DOI怎么找? 2443852
邀请新用户注册赠送积分活动 1434997
关于科研通互助平台的介绍 1412337