Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

Softmax函数 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 特征(语言学) 胡椒粉 计算机安全 语言学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:11
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jy发布了新的文献求助10
1秒前
西柚完成签到,获得积分0
1秒前
1秒前
大脸妹发布了新的文献求助10
1秒前
Holleay123完成签到,获得积分10
1秒前
完美世界应助看看采纳,获得10
1秒前
靓丽的摩托关注了科研通微信公众号
3秒前
4秒前
22鱼完成签到,获得积分10
5秒前
aafrr完成签到 ,获得积分10
5秒前
芝士的酒完成签到,获得积分10
6秒前
6秒前
九城完成签到,获得积分10
6秒前
6秒前
8秒前
司徒文青应助Mid采纳,获得30
8秒前
华仔应助李秋静采纳,获得10
8秒前
buno应助大脸妹采纳,获得10
8秒前
Owen应助喵酱采纳,获得30
8秒前
胖豆发布了新的文献求助10
8秒前
今后应助科研小白菜采纳,获得10
9秒前
orixero应助欢呼的明雪采纳,获得10
9秒前
10秒前
my完成签到 ,获得积分10
11秒前
duxinyue完成签到,获得积分10
11秒前
11秒前
12秒前
科研通AI5应助斯文芷荷采纳,获得10
12秒前
13秒前
2鱼发布了新的文献求助10
14秒前
SYLH应助畅快的谷梦采纳,获得10
15秒前
mingjie发布了新的文献求助10
15秒前
Akim应助克里斯就是逊啦采纳,获得10
15秒前
越幸运完成签到 ,获得积分10
16秒前
young完成签到 ,获得积分10
16秒前
天天快乐应助成就的烧鹅采纳,获得10
17秒前
cora发布了新的文献求助10
17秒前
诚心的不斜完成签到,获得积分10
18秒前
bono完成签到 ,获得积分10
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794