亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 哲学 量子力学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
12秒前
比比谁的速度快给Zephyr的求助进行了留言
49秒前
58秒前
Eileen发布了新的文献求助10
1分钟前
1分钟前
杨柳发布了新的文献求助10
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Akim应助Eileen采纳,获得10
2分钟前
Zephyr发布了新的文献求助200
2分钟前
杨柳完成签到,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
情怀应助555557采纳,获得10
3分钟前
传奇3应助自信寻真采纳,获得10
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
111111111完成签到,获得积分10
4分钟前
Rondab应助lankbki123采纳,获得10
4分钟前
ionicliquids发布了新的文献求助10
4分钟前
Jy完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
赫如冰完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
555557完成签到,获得积分10
5分钟前
聂青枫完成签到,获得积分10
5分钟前
黄黄黄应助Mannone采纳,获得10
5分钟前
5分钟前
5分钟前
555557发布了新的文献求助10
5分钟前
Liufgui应助Mannone采纳,获得10
5分钟前
5分钟前
hahah发布了新的文献求助10
5分钟前
小宋应助hahah采纳,获得20
5分钟前
hahah完成签到,获得积分20
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008132
求助须知:如何正确求助?哪些是违规求助? 3547942
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188