清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

Softmax函数 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 特征(语言学) 胡椒粉 计算机安全 语言学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:11
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lyj完成签到 ,获得积分10
5秒前
充电宝应助白华苍松采纳,获得10
15秒前
房天川完成签到 ,获得积分10
16秒前
51秒前
简单的笑蓝完成签到 ,获得积分10
1分钟前
1分钟前
Jenny发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
YifanWang完成签到,获得积分10
3分钟前
creep2020完成签到,获得积分10
3分钟前
红茸茸羊完成签到 ,获得积分10
3分钟前
4分钟前
factor发布了新的文献求助10
4分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
4分钟前
xfy完成签到,获得积分10
4分钟前
希望天下0贩的0应助factor采纳,获得10
4分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
4分钟前
4分钟前
白华苍松发布了新的文献求助10
5分钟前
新奇完成签到 ,获得积分10
5分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
5分钟前
1128完成签到 ,获得积分10
5分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
5分钟前
5分钟前
Jenny发布了新的文献求助10
5分钟前
zhangguo完成签到 ,获得积分10
5分钟前
6分钟前
含糊的茹妖完成签到 ,获得积分10
6分钟前
微卫星不稳定完成签到 ,获得积分0
6分钟前
Jenny完成签到,获得积分10
6分钟前
会飞的鹦鹉完成签到 ,获得积分10
7分钟前
7分钟前
7分钟前
8分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
8分钟前
彭于晏应助木木三采纳,获得10
8分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137034
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784270
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625522
版权声明 600999