亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 量子力学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
Frecklesss发布了新的文献求助10
18秒前
Frecklesss完成签到,获得积分20
31秒前
Koi关闭了Koi文献求助
39秒前
42秒前
1分钟前
么西么西发布了新的文献求助10
1分钟前
Double发布了新的文献求助10
1分钟前
所所应助罗乐天采纳,获得10
1分钟前
冷傲半邪完成签到,获得积分10
1分钟前
yf完成签到,获得积分10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
yf发布了新的文献求助10
3分钟前
Criminology34应助兼听则明采纳,获得30
3分钟前
是菜狗子啊完成签到,获得积分10
4分钟前
nicolaslcq完成签到,获得积分0
4分钟前
语嘘嘘完成签到,获得积分10
5分钟前
laa完成签到,获得积分20
5分钟前
laa发布了新的文献求助10
5分钟前
Anthonywll完成签到 ,获得积分10
5分钟前
Orange应助科研通管家采纳,获得10
5分钟前
MchemG应助科研通管家采纳,获得30
5分钟前
5分钟前
美好灵寒完成签到 ,获得积分10
5分钟前
SciGPT应助小东西采纳,获得10
6分钟前
6分钟前
轻松戎发布了新的文献求助10
6分钟前
烟花应助轻松戎采纳,获得10
6分钟前
思源应助DonglinHe采纳,获得10
6分钟前
7分钟前
DonglinHe发布了新的文献求助10
7分钟前
7分钟前
MchemG应助科研通管家采纳,获得30
7分钟前
打打应助Kypsi采纳,获得30
7分钟前
9分钟前
简单思萱发布了新的文献求助10
9分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5346788
求助须知:如何正确求助?哪些是违规求助? 4481194
关于积分的说明 13947357
捐赠科研通 4379190
什么是DOI,文献DOI怎么找? 2406216
邀请新用户注册赠送积分活动 1398779
关于科研通互助平台的介绍 1371693