Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 哲学 量子力学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
youjun发布了新的文献求助10
刚刚
刚刚
小曲发布了新的文献求助10
刚刚
belssingoo发布了新的文献求助10
刚刚
daidai发布了新的文献求助10
1秒前
赘婿应助甜甜采纳,获得10
1秒前
行者无疆发布了新的文献求助10
1秒前
假发君完成签到,获得积分10
1秒前
HIKUN发布了新的文献求助10
2秒前
3秒前
4秒前
科研通AI5应助科研Five采纳,获得10
4秒前
4秒前
小二郎应助qq采纳,获得10
4秒前
阿昔完成签到,获得积分10
5秒前
Wrong完成签到,获得积分10
5秒前
缥缈小夏完成签到 ,获得积分10
5秒前
5秒前
科研通AI6应助到灯塔去采纳,获得10
6秒前
科目三应助缓慢语雪采纳,获得30
6秒前
上官若男应助pm采纳,获得30
6秒前
7秒前
小蘑菇应助Nancy采纳,获得10
7秒前
8秒前
kk完成签到 ,获得积分10
8秒前
易烊千玺老婆完成签到,获得积分10
8秒前
8秒前
迅速的小鸽子完成签到 ,获得积分10
8秒前
8秒前
kingwill应助化学采纳,获得20
8秒前
lll发布了新的文献求助10
9秒前
贺贺完成签到,获得积分10
10秒前
10秒前
10秒前
丁浩伦发布了新的文献求助30
10秒前
liuxl完成签到,获得积分10
10秒前
Destiny完成签到,获得积分10
11秒前
酷波er应助wangqiqi采纳,获得10
11秒前
jy完成签到,获得积分10
11秒前
nnnn发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4585299
求助须知:如何正确求助?哪些是违规求助? 4002043
关于积分的说明 12389019
捐赠科研通 3678147
什么是DOI,文献DOI怎么找? 2027106
邀请新用户注册赠送积分活动 1060652
科研通“疑难数据库(出版商)”最低求助积分说明 947170