Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 量子力学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助忧郁小白菜采纳,获得10
1秒前
x1nger完成签到,获得积分10
1秒前
1秒前
鲤黎黎发布了新的文献求助10
1秒前
1秒前
1秒前
思源应助silence采纳,获得10
2秒前
星辰大海应助F1reStone采纳,获得10
2秒前
3秒前
盈盈发布了新的文献求助10
3秒前
cindy完成签到,获得积分10
4秒前
4秒前
5秒前
开放谷芹发布了新的文献求助10
5秒前
Nancy完成签到,获得积分10
5秒前
lllllll完成签到,获得积分10
6秒前
打打应助悠雯采纳,获得10
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
huhuodan完成签到,获得积分10
7秒前
xxfsx应助黄婷萱采纳,获得10
8秒前
xxfsx应助黄婷萱采纳,获得10
8秒前
呃呃发布了新的文献求助10
10秒前
sapioe完成签到,获得积分10
10秒前
天天快乐应助AnasYusuf采纳,获得10
12秒前
13秒前
13秒前
16秒前
西米发布了新的文献求助10
16秒前
WB87应助俏皮的宛凝采纳,获得10
17秒前
稳重若魔发布了新的文献求助10
17秒前
搬砖发布了新的文献求助10
18秒前
18秒前
科学家完成签到,获得积分10
19秒前
20秒前
科目三应助Gandiva采纳,获得10
20秒前
tiantian发布了新的文献求助10
20秒前
20秒前
21秒前
慕青应助淡定的一手采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430904
求助须知:如何正确求助?哪些是违规求助? 4543966
关于积分的说明 14190032
捐赠科研通 4462380
什么是DOI,文献DOI怎么找? 2446515
邀请新用户注册赠送积分活动 1437982
关于科研通互助平台的介绍 1414566