亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper

机制(生物学) 人工智能 舌头 计算机科学 胡椒粉 语音识别 心理学 物理 计算机安全 语言学 量子力学 哲学
作者
Shoucheng Wang,Qing Zhang,Chuanzheng Liu,Zhiqiang Wang,Jiyong Gao,Xiaojing Yang,Yubin Lan
出处
期刊:Sensors and Actuators A-physical [Elsevier BV]
卷期号:357: 114417-114417 被引量:25
标识
DOI:10.1016/j.sna.2023.114417
摘要

As the most important and widely used spice in the world, black pepper is known as the “king of spices.” The geographical origin of black pepper greatly affects its quality and price. The existing physicochemical detection methods for distinguishing black pepper have inherent performance issues, such as expensive equipment, complex operations and high time consumption levels. This study proposes a novel method for identifying the origin of black pepper by synergically applying an E-tongue (ET), an E-nose (EN) and an E-eye (EE) in combination with a deep learning algorithm. First, taste and smell fingerprints were collected by ET and EN instruments, respectively, and the color, shape and texture information of different samples was collected by EE instruments. Three kinds of convolutional neural networks (CNNs) with one-dimensional or two-dimensional convolutional structures were designed and utilized to extract the feature information from the ET, EN and EE signals. Additionally, the Bayesian optimization algorithm (BOA) was applied to globally optimize the hyperparameters of the different CNN models. Then, a channel attention mechanism (CAM) module was introduced to achieve feature-level fusion for the three kinds of signals. Finally, a fully connected layer that uses a softmax algorithm was utilized for classifying the categories of black pepper. The experimental results showed that compared with employing a single sensory device, the proposed method yielded better recognition accuracy. Achieving accuracy, precision, recall and F1-score values of 99.71%, 0.997, 0.997 and 0.996 respectively, the proposed pattern recognition model obtained better classification results than the baseline models for the test set. This study introduces a rapid detection method for identifying the geographical origin of black pepper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助暴躁火龙果采纳,获得10
2秒前
wasd完成签到,获得积分20
13秒前
小蘑菇应助xxywmt采纳,获得10
19秒前
大个应助wasd采纳,获得10
21秒前
思源应助超级亿先采纳,获得30
27秒前
30秒前
xxywmt发布了新的文献求助10
35秒前
王定春完成签到 ,获得积分10
42秒前
LIFE2020完成签到 ,获得积分10
46秒前
小哈完成签到 ,获得积分10
58秒前
caca完成签到,获得积分0
58秒前
hgsgeospan完成签到,获得积分10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
屠俊豪完成签到,获得积分10
1分钟前
完美世界应助屠俊豪采纳,获得10
1分钟前
hgs完成签到,获得积分10
1分钟前
1分钟前
超级亿先发布了新的文献求助30
1分钟前
monster完成签到 ,获得积分10
2分钟前
赝品也烂漫完成签到,获得积分10
2分钟前
2分钟前
研友_8DVRzn发布了新的文献求助10
2分钟前
冷静新烟发布了新的文献求助10
2分钟前
wanci应助Chao123_采纳,获得10
2分钟前
2分钟前
Chao123_发布了新的文献求助10
2分钟前
研友_8DVRzn完成签到,获得积分10
2分钟前
沉默的谷丝完成签到,获得积分10
2分钟前
Owen应助科研通管家采纳,获得10
2分钟前
2分钟前
xuan发布了新的文献求助10
2分钟前
活力新波应助nbtzy采纳,获得10
3分钟前
Yuki完成签到 ,获得积分10
3分钟前
lyon完成签到,获得积分10
3分钟前
3分钟前
僵尸吃掉了我的脑子完成签到 ,获得积分10
3分钟前
南淮完成签到,获得积分10
3分钟前
3分钟前
彭于晏应助长度2到采纳,获得10
3分钟前
4分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5220912
求助须知:如何正确求助?哪些是违规求助? 4394171
关于积分的说明 13680226
捐赠科研通 4257205
什么是DOI,文献DOI怎么找? 2336041
邀请新用户注册赠送积分活动 1333594
关于科研通互助平台的介绍 1288112