膜
材料科学
复合数
化学工程
金属有机骨架
电导率
傅里叶变换红外光谱
质子
纳米晶
金属
细菌纤维素
复合材料
纤维素
纳米技术
化学
有机化学
物理化学
吸附
冶金
工程类
物理
量子力学
生物化学
作者
Shuo Lin,Stephanie A. Kedzior,Jinfeng Zhang,Yu Meng,Vinay Saini,Racheal P. S. Huynh,George K. H. Shimizu,Milana Trifkovic
出处
期刊:Chem
[Elsevier]
日期:2023-09-01
卷期号:9 (9): 2547-2560
被引量:4
标识
DOI:10.1016/j.chempr.2023.05.002
摘要
Summary
Metal-organic frameworks (MOFs) have emerged as proton conductors. However, their applications have been limited by their inability to form a self-standing membrane and their significant performance loss when incorporated into composite membranes. Herein, we report a simple strategy for fabricating a structurally and chemically stable proton-conducting MOF/cellulose nanocrystal (PCMOF/CNC) membrane. This PCMOF/CNC composite membrane has an extremely high MOF loading (89%) and low CNC content. With water-stable PCMOF10, this loading enables the retention of MOF properties, and the composite exhibits a proton conductivity of 1.44 × 10−2 S cm−1 at 85°C and 95% relative humidity. The derived composite maintains its free-standing form, superprotonic conductivity during month-long heating/cooling cycles (indicating high mechanical strength), and excellent thermal and water resistance. We attribute the unprecedented proton conductivity and mechanical integrity of the membrane to the abundant hydrogen bonds between PCMOF10 and CNCs, confirmed through Fourier transform infrared spectroscopy and theoretical computations.
科研通智能强力驱动
Strongly Powered by AbleSci AI